
University of Melbourne

School of Mathematics and Statistics

The Bitcoin P2P Network Topology:
a Review of Inference Methods and

Machine Learning Approach

Itsi Weinstock

supervised by
Professor Peter Taylor

A thesis submitted for the degree of

Master of Science

October 11, 2019



2



Abstract

Blockchain technology, pioneered with the implementation of the Bitcoin digital currency,
allows for the maintenance of a decentralised ledger of transactions that is run on a dis-
tributed network of users, free of centralised authority and trusted third parties. Specif-
ically in Bitcoin, this network is a peer-to-peer network operating a gossip protocol, de-
signed to ensure the efficient spread of information through the network and consensus
on the ledger. Knowledge of the topology of this network allows for the analysis of the
health of the ecosystem and studies into its properties, but also risks the ability of users
to be deanonymised and targeted by other attacks applicable to these networks. In this
context, we explore methods that have been made to discover this topology.

Through this thesis, we explore in depth the various techniques developed by re-
searchers. New methods are regularly being developed due to the subsequent reactions of
the Bitcoin developer community. Most methods rely at least in part on idiosyncrasies
of the Bitcoin protocol, which its developers update to prevent such inference following
the release of new research. We make recommendations on directions of future research
given these circumstances, and provide a proof of concept through the development of
nonparametric models to learn the topology of P2P networks running gossip protocols,
and validate these models on a simulation.

3



4



Acknowledgments

I wish to sincerely thank Peter Taylor for his enthusiastic and thoughtful supervision.
I am also extremely grateful to Rhys Bowden for his welcome guidance and expertise.
This would not have been possible without their critical feedback and necessary
direction.

I would like to thank Aapeli Vuorinen for his tireless help with my endless questions,
for his belief and support, and most of all the friendship we have built through our
time in this course.

I owe specific mentions and thanks to my dear friends Jacinta Cooper, for her
heartfelt moral support during this degree, and Daniel Beratis, for his selfless second
pair of eyes and rigorous sense of written style.

I would like to thank all my friends, my family, and the wonderful communities I
have been a part of over this significant chunk of my life.

I dedicate this work:

to my grandparents — sorry for not calling for Shabbas, I had to write a thesis;

to my father — yes I’m a professor now;

and to my mother, who I miss very much.

5



Contents

Abstract 3

Acknowledgments 5

1 Introduction 9

I Preliminaries 13

2 Mathematical Preliminaries 14
2.1 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Accuracy metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Optimisation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Bitcoin Preliminaries 26
3.1 The Bitcoin blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 The Bitcoin protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II Topology Discovery 37

4 Problem Definition 38

5 A Review of Prior Research 41
5.1 2015: Miller and 6 other authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 2016: Neudecker, Andelfinger, and Hartenstein . . . . . . . . . . . . . . . . . . . . 49
5.3 2018: Grundmann, Neudecker, and Hartenstein . . . . . . . . . . . . . . . . . . . . 56
5.4 2018: Delgado-Segura and 6 other authors . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 2019: Daniel, Rohrer, and Tschorsch . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Similar and ongoing research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Discussion 74
6.1 Fields of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Moving forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

III Simulation and Learning 79

7 Bitcoin Simulation 80
7.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Delay correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Edge detecting algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6



8 Learning on Message Time Correlation 90
8.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Conclusion 93

A Algorithms 94

7



8



Chapter 1

Introduction

You arrive at a very secretive and gossipy village. Each person in the village has

a house that they never leave. In each house is a phone, which the residents use

to call each other. The average citizen has a few friends who they call to relay the

latest rumours, which is the only reason anyone ever calls anyone else. Whenever

someone receives a new piece of gossip from a friend, they quickly call up their other

friends and tell them the news. There’s just one quirk that they all follow: no one

ever tells any of their friends who their other friends are. Now you’ve arrived and

you’ve been given a phone. You can phone up anyone you like and make them your

friend so they’ll start telling you the town gossip. You have one mission: without

asking anyone directly, figure out who is friends with who.

This village is an example of a peer-to-peer (P2P) network, specifically a P2P

network using a gossip protocol. In these networks, new information spreads not

through some central authority, but rather by individuals relaying information to

each other until it reaches everyone. In this thesis, we discover what we can about

the P2P network at the foundation of Bitcoin. Primarily we look at the methods that

researchers have used to find the topology of the network, that is which computers

are talking to each other. Knowledge of this topology has a degree of impact on

the anonymity of Bitcoin, so the Bitcoin developers administering it regularly patch

the underlying protocol in order to make the task harder; quickly rendering the

methods of these researchers useless. In this pattern, we will follow the arms race

between researchers and developers to discover the topology or stop it from ever

being discovered.

What is Bitcoin?

Blockchain technology was introduced by Satoshi Nakamoto in 2008 in his original

Bitcoin white paper [1], which he first implemented with the Bitcoin Core client in

9



2009. The paper outlines a solution to creating a digital currency that doesn’t allow

for someone to spend the same money more than once — known as the double spend

problem — while not relying on a trusted third party such as a bank to maintain

and check transactions against a centralised database. Instead, Bitcoin proposes

a novel technology for maintaining a decentralised database known as blockchain

— as it is comprised of a chain of blocks — as well as an algorithm, using which

competing entities on the network can reach a consensus on how to progressively

add transactions to that database. The technology has since been applied to many

other areas including finance, insurance, voting and contract management [2, 3].

When you want to make a payment with Bitcoin, you must broadcast your

transaction onto the public Bitcoin P2P network, made up of nodes ; entities that

run a program that validates transactions and passes them onto their neighbours in

the network. When joining the network, a node selects their neighbours, peers in

our terminology, by choosing semi-randomly from the nodes that are already part

of the network.

Several entities on this network known as miners collect transactions into blocks.

The miners race against each other to find a solution to a computationally difficult

problem, thus forming a proof-of-work: a “probabilistic proof” that the network

together had to perform a certain amount of computational work to find this par-

ticular block. The first miner to find a solution mines the block, allowing it to be

propagated into the network. The successful miner collects two rewards: a quantity

of Bitcoins for contributing a block to the blockchain; and a quantity of Bitcoins

equal to the sum of the transaction fees of transactions contained within the block.

Transaction fees are commissions paid by the payer of the transaction to incentivise

the inclusion of that transaction in blocks, which is necessary due to competition

arising from the a size limit on blocks. Each block must reference the previously

mined block, providing a linking succession of blocks known as the blockchain. The

difficulty of the mining problem is regularly adjusted with the aim of making the

average inter-arrival time of blocks ten minutes.

The main problem in this thesis is to infer the topology of this P2P network;

determining the peers of any given node or the topology of the whole network.

Members of the network act individually, but in general, nodes do not give out in-

formation about who their peers are. Key to inferring the structure is understanding

how information is transmitted between peers. The network uses a gossip protocol:

each node shares its messages with its neighbours who in turn pass them on to their

neighbours; akin to a rumour spreading like gossip in the village. This same mod-

elling has been used to study viruses spreading between cells and epidemics spreading

10



between people or geographically, so it is also known as an epidemic protocol[4].

Why find the topology?

Aside from being a mathematically interesting topic of study, there are various

reasons why we would want to understand methods of finding the topology of the

Bitcoin P2P network. Peer links are the only way that peers learn of transactions

and blocks. This method of information propagation is vital to understanding how

attacks may be possible in the Bitcoin ecosystem. Knowledge of the topology would

give insight into the health of the ecosystem. Bitcoin and other P2P based systems

offer and rely on decentralisation, so the network topology contains the information

necessary for this to be monitored. Centralisation would allow for attackers to ease

the implementation of denial of service (DoS) attacks — for instance, targeting

nodes in the minimum cut of the network; amongst other issues. A description of

attacks common to P2P Networks such as DoS flooding, eclipse and Sybil attacks

can be found in [5].

Göbel, Keeler, Krzesinski, and Taylor [6] developed models for the effect of prop-

agation delay on the evolution of the Bitcoin blockchain in the context of a selfish

mining strategy [7]. An adversarial miner upon mining a block could chose to not

propagate it into the network and start work on a block linking to this hidden block.

Any extra time the miner has solely working on the next block gives an advantage in

finding it over other miners in the network, corresponding to an increase in expected

income. The miner could release the first block after some time, or when they be-

come aware that another conflicting block is in the network so they can flood the

network with their own block. The selfish miner runs the risk of losing the income

from their first block if they can’t flood the network fast enough. Inferring the topol-

ogy of the P2P network was left as future work so implementations of simulation

and analytical models could be optimised to improve the success of this strategy.

Biryukov, Khovratovich, and Pustogarov [8] demonstrated a method for deanonymis-

ing users that connect to the P2P network that relied on knowing the connections

of any given targets. Specifically they showed a way to correlate a user’s IP address

with their Bitcoin address, the account or wallet that is described in their transac-

tions in the blockchain. The researchers claim this method works for users behind

NATs and firewalls, clients using anonymity services such as Tor, and even in cases

where users generate several wallets. It has a success rate of 11% to 60% without

false positives depending on how stealthy the attacker wishes to be. At the time

the paper was written, they estimated the cost of the attack to be 1500 Euros per

month.

11



Lei [9] demonstrated a method for conducting double spend attacks — applicable

in fast payment scenarios where the victim must provide a service before they are

fully confident that a transaction has been entered into the consensus blockchain.

If the victim relies on knowledge of a transaction being broadcast into the network,

then an attacker can trick the victim by sending one transaction to a small set of

nodes connected to the victim, giving them confidence in the transaction; simul-

taneously sending a transaction spending from the same input (see Section 3.1.2)

to a large set of different nodes. Given that the latter transaction is sent to more

nodes, it is more likely to be accepted into the consensus blockchain than the former.

Knowledge of the topology increased the success probability from 12% to 60%.

Due to the attacks possible with knowledge of the network topology, developers

working on Bitcoin clients (programs that run the software for Bitcoin on users’

computers) regularly update the protocol so that attacks are harder to mount. This

has led to a phenomenon of researchers spending significant time developing new

methods to infer the topology, followed by developers quickly changing small parts

of the protocol to make their research redundant. The questions that arises is

whether there exists a general approach to determining topology in P2P networks

that would work no matter the changes in protocol; in Bitcoin and other blockchain

or P2P applications.

Thesis Outline

We begin in Part I by introducing concepts that will be necessary to understanding

the body of the thesis. In Chapter 2 we cover mathematical definitions and outcomes

followed in Chapter 3 by an in-depth explanation of the Bitcoin ecosystem.

In Part II we embark on a chronological investigation of methods used in the

inference of the Bitcoin P2P network topology. In Chapter 4 we define this core

problem of thesis. Chapter 5 provides a thorough examination of the literature

focusing on five key papers that introduced new methods, within the context of the

Bitcoin developers actively seeking to impede the feasibility of their techniques. In

Chapter 6 we provide a meta-analysis of the research area, and motivate suggestions

for new directions in research that focus on passive, statistical methods.

Part III consists of a proof of concept in developing these methods, describing

nonparametric algorithms. In Chapter 7 we construct a simulation of a P2P network

running a gossip protocol, and show that information of the edges in the network can

be found in the structure of a correlation matrix of delay times. Finally, in Chap-

ter 8 we use this structure to conduct a machine learning experiment on topology

inference, achieving 55% recall and 86% precision in reconstructing edges.

12



Part I

Preliminaries

13



Chapter 2

Mathematical Preliminaries

In this chapter we cover some fundamental mathematical theory including definitions

and results used in the later chapters. These will be necessary for understanding

the contents and analyses of the methods used to discover network topology, which

will be discussed from Part II onward. Readers unfamiliar with Bitcoin, blockchain

technology and cryptography will require an understanding of Section 2.2 on cryp-

tography to follow the Bitcoin preliminaries in Chapter 3. We will also briefly cover

selected optimisation algorithms that will be necessary for the nonparametric meth-

ods developed in part III.

2.1 Random graphs

Networks are formalised by the mathematical notion of graphs. This will provide a

language with which we can naturally model the nodes and connections underlying

the Bitcoin network. The methods we will look at will make certain assumptions

about the networks under investigation. As we don’t know their structure, we often

assume that these graphs come from some probabilistic distribution, or that they

are the outcome of some random process. We will present the method introduced

by Erdos and Renyi in [10] to generate a random graph, and explore some of its

properties.

Those familiar with graph theory may want to skip onto the discussion of random

graphs in Section 2.1.2.

2.1.1 Graphs

Definition 1 (Graphs, vertices and edges). A graph G is a pair G = (V,E) where

• V is a set whose elements are called vertices: v ∈ V ;

14



v1

v2

v3

(a) directed graph

v1

v2

v3

(b) undirected graph

Figure 2.1: Graph representations

• E is a set of pairs of vertices called edges: (v1, v2) ∈ E where v1, v2 ∈ V .

Definition 2 (Directed and undirected graphs). A graph G = (V,E) is called a

directed graph if the edges are ordered pairs

(v1, v2) 6= (v2, v1).

A graph is undirected if the edges are unordered pairs

(v1, v2) = (v1, v1).

We can pictorially represent graphs using circles to represent vertices, and arrows

or lines between pairs of vertices as edges, if they are directed or undirected graphs

respectively. In Figure 2.1 we have representations for G = (V,E) where V =

{v1, v2, v3} and E = {(v1, v2), (v1, v3), (v2, v3)}.

Definition 3 (Connected graphs and paths). We say a graph G = (V,E) is con-

nected if for any pair of vertices v1, vn ∈ V , there exists at least one set of edges

{(v1, v2), (v2, v3), . . . , (vn−1, vn)} called a path from v1 to vn where vi ∈ V and

(vi, vi+1) ∈ E for i ∈ {1, 2, . . . , n− 1}.

For this thesis, we will assume that all graphs we encounter are connected. We

will also assume that graphs do not allow for multiple edges between the same

vertices, and do not allow for loops — edges that are a pair of the same vertex

(v1, v1), v1 ∈ V .

Definition 4. For a graph G = (V,E):

• the order of G is |V |, the number of vertices;

• the size of G is |E|, the number of edges;

15



• for an edge e = (v1, v2) ∈ E, we refer to v1 and v2 as the endpoints of e;

• for vertices v1, v2 ∈ V , if the edge e = (v1, v2) ∈ E then we say v1 and v2 are

neighbours. If G is directed we say v2 is an outgoing neighbour of v1 and

v1 is an incoming neighbour of v2;

• for vertices v1, v2 ∈ V , if the edge e = (v1, v2) ∈ E then we say e is incident

on v1 and v2. If G is directed we say e is an outgoing edge of v1 and an

incoming edge on v2;

• the degree deg(v) of a node v ∈ V is defined as

deg(v) =
∑
vi∈V

1{(v, vi) ∈ E};

the number of edges incident on v, where 1{·} is the indicator function1.

Definition 5 (Trees). A tree is an undirected graph G = (V,E), where every pair

of nodes vi, vj ∈ V is connected by exactly one path.

Definition 6 (Cycles). A cycle is a path from a vertex v ∈ V to itself that contains

at least one edge, and no edge is repeated.

Theorem 7. A graph G = (V,E) is a tree if and only if it contains no cycles.

Proof. See [11].

Lemma 8 (Handshaking lemma). For an undirected graph G = (V,E),∑
v∈V

deg(v) = 2|E|.

Proof. See [12].

Corollary 9. In an undirected graph G = (V,E), the mean degree deg of the vertices

in G is

deg =
2|E|
|V |

. (2.1)

Lemma 10. For an undirected graph G = (V,E)

1. |E| ≤
(|V |

2

)
;

2. for any v ∈ V , deg(v) ≤ |V | − 1.

11{A} = 1 if A and 0 otherwise

16



Proof.

1. The most number of edges is all the possible pairs of |V | vertices,
(|V |

2

)
;

2. each vertex can be neighbours with all vertices in V except itself.

2.1.2 Erdos-Renyi random graphs

Erdos and Renyi outline in [13] a method of generating random undirected graphs

G = (V,E) with a fixed order n := |V | and fixed size N := |E|, where the vertices

v1, . . . , vn ∈ V are labelled so they are not exchangeable. As there are
(
n
2

)
possible

edges, the total number of possible graphs is
((n

2)
N

)
, and we wish to choose one

uniformly at random. We present two methods for constructing such a graph, and

prove their equivalence.

Method 1: We construct all
((n

2)
N

)
graphs and pick one at random, each with

probability 1/
((n

2)
N

)
.

Method 2: We define a stochastic process that forms a graph in the following

way. We have a vertex set V . At time t = 1, there are
(
n
2

)
possible pairs of vertices,

and we choose one e1 uniformly at random. At time t = 2 we now have
(
n
2

)
− 1

possible pairs, and we select one e2 uniformly at random. We continue in this way

until time N edges are selected. At some time t = k + 1 we have
(
n
2

)
− k possible

edges to pick from which are different from the e1, . . . , ek edges already selected. We

select one possible edge with equal probability 1/
((
n
2

)
− k
)
.

Theorem 11. Methods 1 and 2 are equivalent.

Proof. Consider a vertex set V where edges between vertices are selected indepen-

dently at random with some probability p. The number of edges follows a binomial

distribution |E| ∼ Binomial(
(|V |

2

)
, p), and in the case that there are N edges selected,

each edge has an equal likelihood of occurring with probability pN(1−p)(
n
2)−N . And

so each graph of order n and size N is equally probable. In the case that we pick N

given edges at random with equal probability, we can consider it as an outcome of

this method, which also creates a graph uniformly at random from the set of graphs

with order n and size N . In the method considered above, the stochastic process

selects each edge independently with a probability of N

(n
2)

, and so it creates a random

graph uniformly in the same way.

Definition 12 (Erdos-Renyi graphs). We call a graph constructed by methods 1 or

2 an Erdos-Renyi graph of order n and size N .

17



Theorem 13. For an Erdos-Renyi graph G = (V,E) of order n and size N , the

mean degree of the vertices deg is

deg =
2N

n
(2.2)

and for a vertex v ∈ V , the distribution of its degree is given by

P (deg(v) = k) =

(
n− 1

k

)(
deg

n− 1

)k (
1− deg

n− 1

)n−1−k

. (2.3)

Proof. Equation 2.2 comes from Equation 2.1. For a vertex v ∈ V , there are n− 1

other vertices that v can share an edge with. Given that each edge incident to v has a

probability N

(n
2)

of being selected, and that is independent of all other edges, then the

degree of vertex v is given by a binomial distribution, deg(v) ∼ Binomial(n−1, N

(n
2)

).

Now note that N

(n
2)

= 2N
n(n−1)

and substitute in Equation 2.2 to get the result for

Equation 2.3.

Note that the degrees of vertices are not independent of one another, as there is

a fixed number of edges N .

2.2 Cryptography

Bitcoin is often referred to as a cryptocurrency, due to the elements of cryptography

used in the underlying technology. To aid us in understanding, we will need knowl-

edge of definitions and outcomes from this field. This will include the P versus NP

problem, public key cryptography and hash functions.

2.2.1 P and NP

The P versus NP problem is a major unsolved problem in theoretical computer

science. It poses whether a large class of extremely hard problems can be solved

quite quickly.

Definition 14. A problem is a decision problem if it can be answered yes or no.

Definition 15. P is the set of decision problems that can be solved by a deterministic

polynomial-time Turing machine.

Definition 16. NP is the set of decision problems that can be solved by a nonde-

terministic polynomial-time Turing machine; alternatively it is the class of problems

able to be verified by a deterministic polynomial-time Turing machine.

18



In simpler terms, P is a group of problems that take an amount of time to solve

that is proportional to a polynomial function of the size of the problem. These

are generally thought of as easy problems that our computers are quite good at

solving quickly. One example is the problem of deciding whether there exists a

lowest common divisor of two numbers that isn’t 1. It’s quick to find an answer,

and quick to check that an answer is correct.

NP is a class of much harder problems. They don’t need to necessarily be solvable

in any polynomial order of time, but they can be verified in a polynomial order of

time. An example decision problem is whether it’s possible for the University of

Melbourne to schedule its classes for all of its students in such a way as to guarantee

that no one has over an hour to wait between classes and no student has a time clash

with two classes at the same time. It’s extremely hard to say if that’s possible, but

if given a solution, you’d be able to check very quickly by checking each student’s

timetable.

Clearly P ⊆ NP , but it is an open question whether P = NP or not. It could

be proven to be true if someone could demonstrate an algorithm that solves an NP

problem2 in polynomial time. If that were the case, then many problems we consider

extremely difficult would become very easy to solve. In particular, if P = NP , then

there exist trivial ways to break modern cryptography. If someone were able to

show that P = NP then most of our communication systems would collapse quite

quickly for this reason. However, most in the field are confident that P 6= NP . But

until that is proven, the practice will remain in computer science academic papers

of leaving a footnote3.

2.2.2 Public-key cryptography

Consider that I want to send you an important letter in the mail. When you read

it, you might get suspicious that it wasn’t from me, because anyone could have

sent you that letter and written my name on it. To remove any doubt, I can sign

that letter, and you can verify that the signature is correct (assuming signatures

are unforgeable). We now outline a mathematical algorithm for digitally signing

messages in an analogous way.

The sender randomly generates a number kpr, and keeps it secret. This is her

private key, not to be shared with anyone. She uses a function K to generate her

public key kpu,

kpu = K(kpr). (2.4)

2actually a problem in a related class called NP − hard.
3provided that P 6= NP .

19



She broadcasts the public key into a public place, so anyone can use it. Wanting to

send a message, she uses a function S to generate a signature sig for the data, using

her private key,

sig = S(data, kpr). (2.5)

Now, she sends the message to a recipient containing the data and the signature.

In order to check that the data did actually come from her, the recipient checks the

data and signature with a verification function V and her public key kpu,

ver = V (data, sig, kpu). (2.6)

By convention, ver = 1 if the signature for the data was signed with the private

key kpr that generated the public key kpu, and ver = 0 otherwise. With data

representations d1, d2 and private keys k1, k2, we can summarise this as

V (d1, S(d2, k1), K(k2)) = 1 ⇐⇒ d1 = d2 and k1 = k2.

As long as we have functions K, S and V that interact in this way, then this

is a way of guaranteeing that anyone we send messages to can verify that it came

from us. We also require that it’s intractable to find the inverse of the functions,

otherwise it would be possible for anyone to find the private key, and so anyone

could sign the message.

We can find functions that have these properties. In the Bitcoin protocol,

their derivations come from methods utilising finite fields constructed over ellip-

tical curves, specifically Koblitz curve secp256k1 [14]. These methods require that

P 6= NP .

2.2.3 Cryptographic hash functions

Figure 2.2: Examples of the SHA-256 cryptographic hash function

The key idea behind a cryptographic hash function [15] is that it takes a data

string of any size, and maps it to an output space of fixed size (such as a binary

number in some range), in a way that seems like a uniform distribution, but always

gives the same output for the same input. Cryptographic hash functions, specifically

SHA-256 [16], are extensively used in the Bitcoin protocol.

20



Definition 17 (Hash functions). A hash function is any deterministic function

that maps data of arbitrary size to data of fixed size, called the hash of the data.

Definition 18 (Cryptographic hash functions). A cryptographic hash function

is a hash function H with the following properties:

• a small change in the data d should yield a completely different hash H(d),

such that d and H(d) appear uncorrelated;

• H is non-invertible. Given an arbitrary hash h, it should be intractable to

find any d such that H(d) = h (the only way to do so should be a brute

force approach of trying many different data arguments until the given hash is

found);

• H is collision-resistant. It should be intractable to find two inputs d and d′

such that H(d) = H(d′) when d 6= d′.

Given these properties, we can map every input in a way that appears uniformly

at random to the output space. These functions can not exist if P = NP , so their

existence relies on the assumption that P 6= NP . In the case of SHA-256, every

input is mapped seemingly uniformly at random to a 256-bit binary number and it is

intractable to find any input that maps to any given 256-bit binary number. These

properties are essential for the proof-of-work process, as we can set a difficulty that

defines the probability that any hash is successful, and any user can quickly verify

that the hash is successful.

2.3 Accuracy metrics

Our stated goal in this thesis is to study ways to infer the topology of a network.

Given a graph G = (V,E), infer the edge set E. There are many possible guesses for

E, so it may be better to think of this rather as a binary classification problem on

the edges. That is, for some edge e, does e ∈ E? There are only two options, true

or false. We conduct this analysis on every possible edge of which there are
(|V |

2

)
,

and construct our best guess for the edge set E ′ = {e : we believe e ∈ E}. Based

on e’s membership of E and E ′, we can place it in one of four accuracy categories

which describe the confusion matrix in Figure 2.3.

The accuracy of a prediction can be described by the total number of edges in

each category. There are a number of useful interpretations that can be made using

combinations of these totals. Different metrics are useful depending on the problem.

21



Truth
Prediction e ∈ E e 6∈ E

e ∈ E ′ True Positive False Positive predicted Positive
e 6∈ E ′ False Negative True Negative predicted Negative

actual Positive actual Negative

Figure 2.3: Confusion matrix

In the medical field, it is common to use sensitivity and specificity [17], defined as

sensitivity =
True Positives

actual Positives
, specificity =

True Negatives

actual Negatives
.

Consider a diagnostic test to predict whether someone has a disease. Sensitivity

would give the proportion of the population with the disease that the test captures.

Specificity would give the proportion of healthy people that are identified correctly.

In the field of machine learning, it is common to use true positive rate (TPR)

and false positive rate (FPR) [18], defined as

TPR =
True Positives

actual Positives
, FPR =

False Positives

actual Negatives
.

TPR gives the probability that a true case is captured. FPR gives the probability

of a false alarm. Often in machine learning approaches, a hyperparameter can be

tuned to adjust the prediction. As it does this, the TPR and FPR are altered.

These values can be plotted as the Receiver Operating Characteristic (ROC) curve

as seen in Figure 2.4. Quality of algorithms are often evaluated by comparing the

area under this curve.

In the literature on Bitcoin topology inference we review in Chapter 5, we find

that the researchers consistently use recall and precision,

recall =
True Positives

actual Positives
, precision =

False Positives

predicted Positives
.

It may have become apparent that sensitivity, TPR and recall are identical. It seems

useful to know the proportion of total positives that are captured in the prediction.

The first paper [20] quotes numbers from their confusion matrix directly. The

second [21] uses recall and precision. The papers that follow use the same, most likely

so there is a common comparison point. These metrics are fairly uncommon in the

broader literature, so it is interesting to see how these practices sustain themselves

in a narrow field. It also likely indicates that the researchers in general haven’t

4from [19]

22



Figure 2.4: ROC curve4

looked at other fields for inspiration, which will become a recurring theme in this

thesis.

One argument is hinted at in [21] as to why it is useful. If an adversary needs

to know the peers of a given node to perform an attack such as a DoS, then they

aren’t so concerned with false positives. They would wish to maximise their recall

to ensure that all the peers are found, and then perhaps place some bound on the

number of false peers as a secondary goal by raising the precision.

The F1 score is sometimes used to combine recall and precision. It is defined as

their harmonic mean

F1 = 2 · precision · recall

precision + recall
.

It can be useful to distil the confusion matrix into a scalar value such as F1.

Given a vector of parameters β in a model for a classification problem, we can

calculate F1(β), and so use optimisation techniques to find the values of β that

maximise F1. We will use this approach in part III.

2.4 Optimisation algorithms

In Part III, we will utilise algorithms from the field of mathematical optimisation.

Specifically, two algorithms using local search heuristics called coordinate ascent and

simulated annealing.

23



2.4.1 Local search

Definition 19. An optimisation problem is one where we have a set of feasible

solutions χ, a cost function with a scalar output f : χ→ R, and a goal ∈ {min,max}.
We aim to find the solution x ∈ χ such that for any y ∈ χ, f(x) ≤ f(y) if goal = min

and f(x) ≥ f(y) if goal = max.

When optimisation problems are hard, for instance when they’re in NP, we usu-

ally require a heuristic solution: a practical method that aims to find a good solution

that isn’t necessarily optimal, but still has a cost that is a good proportion of the

optimal.

Definition 20. In an optimisation problem, two feasible solutions x1, x2 ∈ χ are

called neighbours if x1 can obtained from x2 by a small change in specification

called a local transformation. The neighbourhood N(x) of a feasible solution

xi ∈ χ is the set of all neighbours of xi.

In a local search heuristic, we acknowledge that there are often too many feasible

solutions to analyse at any given time. We restrict our focus to the immediate area

around our current solution and use a method to pick a new solution, then shift our

focus to the immediate area around that solution. We chose this area with a local

transformation that defines the neighbourhood of any given solution. By repeating

this process, the aim is to steadily head in the direction of the optimal solution, or

at least a good solution.

Definition 21. In an optimisation problem, A local optimum is a solution x ∈ χ
such that for any neighbour y ∈ N (x), the cost f(x) ≤ f(y) if goal = min and

f(x) ≥ f(y) if goal = max.

A local optimum is the best solution in the small area an algorithm looks at,

but that may be missing better solutions outside of the neighbourhood. There is no

guarantee that local optima are good solutions to optimisation problems. They can

be hazardous for local search heuristics due to their restricted neighbourhoods.

2.4.2 Coordinate ascent

Consider some set of feasible solutions χ ∈ Rn in a maximisation problem. We

define a local transformation of x ∈ χ as a change in only one of its coordinate

values. The scope of that change defines the neighbourhood of a solution focusing

on a specific coordinate value, Ni(x). For instance, given x has coordinate in i

xi, we could define the neighbourhood Ni(x) = {y ∈ χ|yi ∈ [xi − 1, xi + 1]}. We

24



cycle through the dimensions i ∈ {1, . . . , n} changing the ith coordinate to the best

solution in the neighbourhood, all other coordinates being kept fixed. We continue

this process until we complete an entire cycle through the coordinates without any

of them changing. The explicit description is explicitly given in the appendix in

Algorithm 4.

2.4.3 Simulated annealing

Methods such as coordinate ascent tend to get trapped in local minima. Often the

analogy is used (in the case of minimisation) that we need to sometimes climb hills

to get to deeper valleys. Given that coordinate ascent never decreases the cost of the

solution, it will never attempt to perform this kind of exploration that is sometimes

necessary to find better solutions.

Simulated annealing [22] is an optimisation heuristic designed to perform explo-

ration of the solution space in order to avoid local optima. It is based on a physical

analogy from metallurgic annealing where metals are brought up to a certain heat to

break their crystal structure, then through a controlled cooling process, recrystallise

into a more uniform and lower energy state, giving desirable properties such as in-

creased hardness and ductility. Applying this to optimisation problems, we initially

bring the process to a high initial “temperature” Ti, which controls how likely the

search algorithm is to move to worse solutions in the solution space. We pick a solu-

tion in the current solution’s neighbourhood, if the solution is better, we move to it,

and if it is worse, we still move to it with positive probability that depends on the

current temperature. As the algorithm progresses, the temperature is lowered by a

cooling schedule s(T ), reducing the probability that we move to worse solutions. By

using this method, the heuristic has a positive probability of leaving local minima.

By the time it reaches its final temperature Tf after I iterations, there is a very low

probability of moving to worse solutions, so we end up in a local optima in hopefully

a better region of the solution space. There is a large body of literature surrounding

simulated annealing, including on variants of the basic algorithm and on the best

selection of hyperparameters and a cooling schedule to fit various problems.

25



Chapter 3

Bitcoin Preliminaries

In this chapter we discuss what Bitcoin is, the problem it attempts to solve, and

how it achieves that. We will describe the Bitcoin ecosystem including its users,

how they communicate, the rules they follow, and why users follow those rules.

Bitcoin is an electronic payment system, theorised in 2008 as a white paper

outlining its theory [1], and first launched in 2009. While there had been many

previous attempts to create digital currencies based on cryptography, Bitcoin was

the first to successfully work and provide a proof of concept, which it achieved

through the introduction of blockchain technology. A blockchain provides a solution

to the double-spend problem, while allowing a completely decentralised design and

incentivising all parties to participate in the system. Every participant keeps a copy

of a ledger of all past transactions and follows a set of rules such that a consensus

on the ledger is reached as new transactions are added.

Bitcoin is comprised of two parts: the theory of the Bitcoin blockchain and its

implementation. A protocol is an implementation that dictates the specifics of how

users communicate with each other, the data structures that are used to store in-

formation, and how the information is processed. Although all users must use the

same communication methods and data structures to make the system work, dif-

ferent nodes may follow different rules for processing the information. However in

practice, most users utilise a Bitcoin client : software that manages all of this for

them. While in theory there are any number of protocol that could be implemented,

at the time of writing, over 98% of nodes that are publicly reachable use an imple-

mentation of a client called Bitcoin Core1, and so we will refer to the Bitcoin Core

implementation as the Bitcoin protocol.

1https://bitnodes.earn.com/nodes/

26

https://bitnodes.earn.com/nodes/


The double-spend problem

In a digital currency system, we want to facilitate transactions; for instance a payer

giving one coin to a payee. Using public-key cryptography, it is easy to verify that

the payer has authorised the transaction. A payer can sign a transaction with their

private key, and the payee can verify that the signature and transaction came from

the payer. However, the payee cannot guarantee that the same coin hasn’t been

spent somewhere else already, and won’t be spent again. Normally this problem

is solved by introducing a trusted (and usually centralised) third party, such as a

bank. Being able to address this without introducing trust in a third party had been

a long standing problem. This is the double-spend problem that the original white

paper [1] addresses.

The solution proposed is to be aware of all transactions. This is achieved by

transactions being publicly broadcast, and a system for all participants to arrive

at a consensus on the state of a ledger, discarding any invalid transactions such

as double-spends. All then that is needed for the payee to have confidence in the

transaction is proof that the transaction is part of the consensus, and that the

consensus can’t be changed in the future.

General approach for a P2P network

When a node wishes to make a transaction, spending some money, they broadcast

a message detailing the transaction to their neighbours, which eventually floods

the network. Each node checks that the transaction doesn’t spend money that

has already been spent somewhere else, and adds it to a personal collection of

transactions called a block.

Nodes can send their blocks onto the network once they verify it. The process

of finding a solution to the verification problem is difficult, and requires a lot of

work to solve. However if a node solves it, they are rewarded. A verified block

represents a manifestation of the amount of work it took solve the problem. It is a

proof-of-work. The verified block is sent onto the network, where the other nodes

quickly check it for verification, and it is accepted as the next block on the history

of accepted blocks, called the blockchain. Each node tries to get their blocks onto

the blockchain so they can collect the reward, and so an important feature of blocks

is that they refer to the previous block in the chain. Apart from being a record

of all transactions, the blockchain represents the total proof-of-work of solving the

problem of verifying all its constituent blocks. The longer the chain, the more work

it took to create that chain.

27



The guiding principle of the network arriving to a consensus of accepted trans-

actions is to trust the largest proof-of-work; trust the longest chain. This solves the

double-spend problem as each block contains no transactions that double-spend any

other transaction in the blockchain, and due to the amount of work that would need

to be proved, it is highly unlikely that anyone can double-spend any transaction in

the future, provided that no individual actor holds a significant proportion of the

network’s total computing power, as we will discuss in Section 3.1.6.

3.1 The Bitcoin blockchain

Here we will describe in detail the theory underpinning the Bitcoin blockchain in-

cluding the structure of the ecosystem, the the distributed ledger of transaction,

how the ledger evolves and the principles underlying this process. Readers familiar

with Bitcoin may want to skip to Section 3.2 for a specific protocol details that are

utilised in Chapter 5.

3.1.1 P2P network

A key feature of the Bitcoin network is that it is decentralised, in that users do not

need to trust a central organisation or entity. A computer connected to the Bitcoin

network is called a node. Two nodes that are connected, sharing information, are

called peers. A peer-to-peer network is distinguished from a client-server network

where clients communicate directly with trusted, centralised servers; for instance

a customer requesting a money transfer from a bank. Most nodes are established

by users wanting to use the Bitcoin currency and nothing else, and are known as

partial nodes. We will only study the P2P network of the full nodes : nodes that

participate fully in the ecosystem by verifying transactions and blocks, and transmit

information further into the network; requiring them to keep a full up-to-date copy

of the blockchain. At the time of writing, there are estimated to be 9694 publicly

accessible full nodes [23]. From here we mean full nodes when we say nodes.

It is important to note that when transactions are passed across this network,

the details of the payers and payees are not in reference to their IP addresses2 but

rather to their Bitcoin addresses; hashes of their respective public keys. We will refer

to an individual’s Bitcoin address as their pseudonym, and their IP address as their

address. The problem of deanonymisation in Bitcoin is the matching of addresses

with pseudonyms: finding out which computers are performing which transactions,

2Internet Protocol address: the unique identifier for a device connected to the internet

28



and how much Bitcoin currency they have.

3.1.2 Transactions

Transactions are records that reassign Bitcoins from one pseudonym to another.

They consist of inputs, references to the payer’s funds received from previous trans-

actions; and outputs, a list of pseudonyms and funds that the payer wishes to send

those funds to. The input of one transaction is the output of a previous transaction.

Each output is signed by the payer using their private key, such that anyone can

verify that the payer wished to spend it.

Figure 3.1: Transaction examples3

It is important to understand that a traditional notion of a bank account does

not exist in this system. A user does not refer to a pool of funds that they have

access to. Rather, there is a collection of unspent transaction outputs known as

UTXOs in the system, and if an UTXO refers to a user, then the user can spend it by

creating new outputs with the original output as an input. Note that you cannot

spend part of an input. The whole input must be spent, however a user may refer

to themselves in the new output they create, thus preserving their funds.

3.1.3 Verification and conflicting transactions

Transactions are sent through the P2P network, and are verified by nodes before

being passed to their peers. The verification has two parts:

1. Verification of the signature of each input, using the public key associated with

the pseudonym of the payer of each input;

3from https://freedomnode.com/guides/17/how-bitcoin-works

29

https://freedomnode.com/guides/17/how-bitcoin-works


2. Verification of the validity of the transaction, checking that the sum of inputs

is greater than the sum of outputs, and that each input and that each input is

an UTXO. If the sum of outputs is greater than the sum of inputs, then this is

interpreted as a transaction fee which is reassigned at the discretion of whoever

mines the block that contains the transaction, usually to the miner themself.

For a given UTXOi, if two transactions have UTXOi as an input, then we call those

transactions conflicting. If a set of transactions all have an input UTXOi as an input,

we call that set mutually conflicting. If more than one of these transactions is

included in the blockchain, then this would be a double-spend. The structure of

transactions and verification problems were made to address this problem. Once a

node receives a transaction that spends UTXOi, that node no longer recognises UTXOi

as unspent. So if it receives another transaction spending UTXOi, then it will not

recognise it as only spending from the collection of all UTXOs, and so it will be dropped

by that node: The node will not store it and not propagate it into the network.

3.1.4 Blocks

Nodes work on creating blocks, collections of transactions that haven’t appeared

in previous blocks. This creation process is known as Bitcoin mining, with a node

participating in the process referred to as a miner. Blocks always refer to a single

previous block, forming a chain of blocks, which is where we get the term blockchain.

It is usually in the miner’s interest to link their block to the most recent block on the

longest chain they are aware of. If they don’t, the block risks becoming a fork in the

blockchain that will become ignored by future users as it is not part of the longest

chain. In this way, the blockchain acts as a ledger of all accepted transactions.

The details of the structure of a block can be found in [24]. Key to understanding

their use is that they contain:

• a list of transactions;

• an extra coinbase transaction with no inputs that consists of a block reward,

newly introduced Bitcoins that are given to the miner. Initially 50 Bitcoins,

this reward halves every 210,000 blocks (roughly every four years) and will

be set at 0 once 21 million Bitcoins have been mined (created in coinbase

transactions);

• a timestamp of the creation of the block;

• a hash referring to a previous block;

30



• a 32-bit nonce which is a number used in the mining process. Miners adjust

this number in order to find a successful hash.

3.1.5 Mining blocks

To mine a block, a miner must solve a computationally difficult problem to demon-

strate a proof-of-work. In return, they receive any transaction fees and the coinbase

transaction as a reward. This incentivises the miners to include transactions with

the largest fees, and in turn incentivises payers to include higher fees in order to

have their transactions included in the blockchain.

A hash of a block Hi can be computed in the following way:

Hi = hash(Hi−1, transactions, timestamp, nonce)

where arguments of the hash are concatenated, and the hash takes the form of a

binary number. The miner must find a valid hash by repeatedly adjusting the nonce,

such that Hi < di. The difficulty threshold di of finding a valid hash is determined

by the current mining difficulty: a 256-bit binary number adjusted every 2016 blocks

(roughly two weeks) in order to keep the mining rate at approximately one block

every ten minutes. There is no better way to solve this problem apart from a brute

force approach, assuming that P 6= NP .

Using this method, the amount of work gone into finding a block is quantifiable.

The current4 threshold for a valid hash is5 di = 2.11×1054. Miners repeatedly create

hashes by adjusting the nonce until they find a successful hash. This is equivalent to

i.i.d. sampling without replacement of a Bernoulli variable with success probability

p = 2.11·1054

2256
= 1.82×10−23. This process can be modelled as a geometric distribution,

which gives probabilities for the number of trials until the first success. The expected

value of a geometric distribution is 1
p
, which would correspond to 5.48×1022 hashes.

To give this some perspective, the universe is currently 4.35 × 1017 seconds old.

The number of hashes on average to mine one block corresponds to an enormous

amount of computational power. The energy usage is currently estimated in [25] to

be 73.121 TWh per year. The key principle here is that an adversary would have to

prove a similar amount of work to these levels in order to overcome the consensus.

Interestingly and perhaps concerningly, the CO2 emissions of the Bitcoin ecosystem

are comparable to that of Denmark.

4https://www.blockchain.com/charts/difficulty
5The difficulty defined Di in the Bitcoin protocol is different. Here we use the target di which is

calculated as di = dmax/Di, where dmax = 2224 is the maximum threshold. The Bitcoin difficulty
at the time of writing is Di = 1.28× 1013.

31

https://www.blockchain.com/charts/difficulty


Once a block has been mined, the miner can broadcast it onto the network by

sending it to its peers. Nodes validate the block by checking the hash (thereby

ensuring the proof-of-work), verifying the individual transactions and checking for

double-spends.

It is a common tactic for many computers to be used by an individual or group to

find blocks. These are called mining pools, and they usually don’t interact directly

with the network, but rather through communicate with the network through a

gateway node that otherwise functions as a normal node. We can just model that

gateway node as holding the computational power in that instance and ignore the

mining nodes in the pool.

3.1.6 Block acceptance

When a full node receives a new block, the rule they follow is to accept the block if

it forms part of the longest blockchain, representing the largest combined proof-of-

work. Where two blocks are both part of separate, but equally long chains, the rule

is to accept the block that they received first. It is possible that the blockchain will

fork, caused by two or more blocks being mined before any are fully propagated.

This is an artefact of the propagation delay, which is studied in [26]. At that point,

the different parts of the network mine new blocks linking to the block they have

accepted, until one side of the fork forms a longer chain than the other, and for

a long enough time for that information to spread through the network. For this

reason, it is recommended that a user should not have confidence in a transaction

being part of the consensus until a sufficient time has passed (around 1-2 hours)

such that it is very improbable that the block the transaction is contained in is part

of a fork that may become redundant.

To understand why this is a stable consensus, consider an adversarial miner,

who we assume only has a small fraction of the computational power of the whole

network, who wishes to alter the consensus. That is, they wish to form a blockchain

long enough that all the nodes switch from accepting the consensus blockchain to

the adversarial one. This adversarial miner would have to link a block to some

previous block in the consensus blockchain, and then work at linking more blocks

to that fork until it is longer than the consensus chain. All the while, every other

miner in the network is working on making the consensus chain longer.

Nakamoto analyses the probability of the adversarial miner catching up in the

original paper [1] with a proportion p of computational power of the network, average

time to find a node T0, length of the consensus chain past the fork n and length of

adversarial chain past the fork m. The time to find n blocks on the consensus chain

32



takes on average nT0
1−p . He uses that mean to make a assumption that simplifies a

model for the number of blocks that the adversary will find in the same time, which

he calculates to be Poisson distributed with mean np
1−p . Using this, and modelling the

difference between the length of the consensus and adversarial chains as a continuous-

time Markov birth-death process, he arrives at a probability of min(1, ( p
1−p)n−m).

Rosenfeld [27] corrects this analysis by noting that this assumption isn’t needed

for an analytic solution. As the probability that the attacker successfully mines a

block is described by a Bernoulli random variable with probability p, He models

m more accurately as the number of successes until n failures (the consensus chain

finding a block). This is described as a negative-binomial random variable: m ∼
NegativeBinomial(n,p). He then calculates that if someone waits for n blocks before

considering a transaction confirmed, the probability that the adversary can perform

a double spend is min
(
1, 1−

∑n
m=0

(
m+n−1

m

)
((1− p)npm − (1− p)mpn)

)
.

For values of p over 0.5, the adversary will eventually catch up with probability

1. The reccomended wait time to confirm a transaction is generally at least 1 hour,

corresponding to at least 6 blocks on average. Here, the probability of catching

up with roughly 40% of the computing power is roughly 40%, and drops quickly

with less probability. This would mean for those with less than 40% of the network

computing power would be better off contributing to the consensus chain if they are

seeking to maximise their expected reward. However this strategy still has positive

probability if one wishes to re-spend a specific transaction.

However assuming only a small percentage of total network computational power,

the probability of an adversary being successful with this attack is minuscule as they

will never be able to demonstrate a proof-of-work that is greater than the rest of the

system combined. It is intractable to alter the consensus blockchain for this reason,

giving rise to two main properties of Bitcoin:

• All parties trust and are incentivised to add to the longest blockchain.

• All past transactions are immutable. Once a transaction is part of the con-

sensus, it is intractable to cancel it.

3.2 The Bitcoin protocol

In this section we will outline some features of the Bitcoin protocol that are necessary

to understanding some tactics common to the inference methods used in Chapter 5.

The code for Bitcoin Core is publicly available. It has a large developer com-

munity, with changes being approved once issues are discussed and code is reviewed

and tested before being implemented.

33



3.2.1 Nodes

Nodes hold a list of the IP addresses of their peers. By default they manage 8

outgoing connections and up to 117 incoming connections; up to a total of 125.

Most information is transmitted in both directions along these connections, with

outgoing and incoming not being differentiated. in the discussion of nodes and full

nodes in Section 3.1.1, we can differentiate full nodes (active participants in the

ecosystem) as those nodes that accept incoming connections.

3.2.2 Node discovery and new peers

A list of “good” nodes is kept, and hardcoded into the Bitcoin Core client. Upon join-

ing the network, a new node will randomly select some of them as their outgoing con-

nections. They will then begin adding nodes to their list of known addresses called

addrMan (not necessarily connecting to them) through the use of ADDR messages,

which is described in detail in Section 5.1.1. When needing to form new connec-

tions, a node randomly selects from their list. The intention of this is to construct

a random graph, which likely lead to healthy properties and consistency in the

network.

3.2.3 Propagating transactions

Nodes keep a data structure called memPool that records all valid transactions the

node has received but that are not yet included in blockchain. Propagation of

transactions between peers is a three step process, with initial communication of

transactions as hashes in order to reduce bandwidth.

Figure 3.2: Three step process for forwarding transactions from A to B.6

6from [28]

34



1. INV: When a node receives or creates a new transaction, it records it in its

memPool. Periodically, the node sends a hash of these new transactions to each

of its peers with an INV message.

2. GETDATA: When a peer receives an INV message, it checks the hashes of the

transactions in its own memPool. If an item of the INV message is not in its

memPool, then the peer will respond with a GETDATA message containing the

hashes of the transactions that it does not already have.

3. TX: Upon receiving a GETDATA message from its peer, a node will send the

transactions that are requested to that peer.

A node may receive multiple INV messages of the same transaction from different

peers in a short space of time, and so they create a queue of those peers. The node

sends a GETDATA message to the first node in the queue, then waits two minutes to

receive a TX message before moving down the queue and sending another GETDATA

request. The decision to include this was likely made because to account for time

taken to send large transactions.

3.2.4 InvBlock

Miller and 6 other authors describe a clever technique in [20] that takes advantage

of this three step process to block any given node from receiving a transaction that

you make for a period of time.

Consider three nodes, vi, vj and vk who are all peers, and two transactions tx1 and

tx2, that vi is unaware of. If vj sends INV(tx1) to vi, who responds with GETDATA(tx1)

back to vj. After one minute, vi has still not received TX(tx1) from vj, but now vk

sends a message INV(tx1, tx2) to vi. Two minutes have not elapsed yet, so vi cannot

request tx1 from vk, so just sends GETDATA(tx2) to vk, who responds quickly with

TX(tx2). Once the two minutes since sending GETDATA(tx1) to vj has elapsed, vi goes

to the next node in the queue for tx1, which is vk, and sends them INV(tx1), which

is resolved with GETDATA(tx1) and TX(tx1) messages.

This might seem like a needlessly complex arrangement, as in an alternate pro-

tocol, vi might be allowed to send GETDATA(tx1, tx2) to vk after the INV message

was received from them. However if vj had eventually sent GETDATA(tx1) within the

two minutes, then the full message TX(tx1) would have been sent from both vj and

vk to vi, which is something we want to avoid as TX messages are much larger so

we want to avoid taking up bandwidth across thousands of needless TX messages.

There might be other ways to design this in a way that doesn’t leave a 2 minute gap,

35



but this method works and doesn’t interfere with what is a very complex system of

many simultaneous transactions being broadcast.

The researchers proposed the following InvBlock technique. Consider that we

have some node va that we control, and we generate a transaction txa that we want

to send into the network. Suppose that there is some node vz and we want to

guarantee that it doesn’t know about txa for a period of time, at most two minutes.

We send INV(txa) to vz, then wait for a responding GETDATA(txa) message. Then we

send txa in the normal three step process to all our other peers. Given that vz has

already sent the GETDATA message to va, it will not send another to any other node

for at most 2 minutes after we received that message. So as long as we don’t send

them TX(txa), we can guarantee that they don’t know about txa, and so within that

time period we can control when they find out about it.

It is interesting to note that this from this pragmatic method to reduce band-

width on the network, these researchers were able to find a significant vulnerability

in the system.

3.2.5 The Bitcoin testnet

The Bitcoin testnet is a second implementation of the Bitcoin blockchain where it is

agreed that the currency has no value. The Bitcoin protocol is only slightly different,

with details found in [29]. Its purpose is to exist for testing protocol changes and

other experimentation.

36



Part II

Topology Discovery

37



Chapter 4

Problem Definition

At any given time, there exists a network of full nodes that are running Bitcoin.

This network changes as nodes enter or leave the network and make new connections.

At any given time, we wish to know the topology of this network. We can model

the nodes as a set of vertices V , and the connections as directed edges E. An

unknown proportion of the nodes are publicly reachable, meaning that we can find

their addresses and connect to them. We assume that reachable nodes make up

the vast majority of the network, and denote their set Vp. We may set up our own

nodes, denoted by the set Va, and connect them to the reachable nodes Vp to receive

messages and take messages. We denote the edges incident to vertices in Va as the

set Ea.

We can formally describe the problem of finding the Bitcoin P2P network topol-

ogy as: Given Vp, Va and Ea, find the graph G = (V,E).

Concessions

While the Bitcoin P2P network is best modelled by a directed graph due to its

distinction of incoming and outgoing peers, for most outcomes outlined in the intro-

duction it may be sufficient just to find which edges exists, and not necessarily in

what directions they point. For this reason, it will be sufficient to model the graph

as undirected, and if we can ascertain edge directions then that is bonus informa-

tion. The vast majority of the time, the edges do not distinguish between incoming

and outgoing peers. For instance, the propagation of transactions and blocks occur

in both directions on an edge. However in some cases, it is important to distinguish

direction, for instance in the case of address propagation, as described in Section

5.1.1.

We may also have to limit our capacity for complete knowledge of the network at

any given time period. Most methods will measure over a period of time [t1, t2], in

38



which nodes may join or leave the network, and new edges may be formed because

of that. So we may have to limit out maximum knowledge to those nodes in V that

were in the network for the entire time [t1, t2].

It may also be sufficient to restrict ourselves to finding the graph of reachable

peers Gp = (Vp, Ep), where Ep is the set of edges between the reachable peers.

Tools

We have a number of tools that are available to us to help us in finding the topology.

These are wide and varied. For instance, we could try to email users to ask them

to send us information on their connections as part of a research project. However

we want to discuss reliable methods, which will mostly be restricted to information

that peers will send us that conforms with the Bitcoin protocol. This can take the

form of transaction messages, block messages, address requests, and a plethora of

other messages part of the protocol including messages establishing connections,

synchronising systems, and many others. We can also measure the times that we

receive these messages, which will be the focus of the statistical models.

A note on transaction fees

Most of the techniques in this thesis will focus on transactions. If we wish to send

transactions we will encounter transaction fees. This may place a financial limitation

on methods that actively send transactions.

As noted in Section 3.1.2: for any transaction, the difference between the sum

of input funds and sum of output funds is the transaction fee. If that transaction is

included in a block, then the miner of that block designates where those funds go,

most likely to themself.

Before propagating a transaction, nodes check that transactions fees meet a

transaction fee. This is likely a countermeasure to preventing the flooding of the

network with functionally empty transactions. Bitcoin Core has a default setting of

10−5 Bitcoin per kB. Given an average transaction size of 500 bytes and the current

exchange rate, each transaction costs about 0.043 USD: [30].

Transactions have a size in memory, so we can define a transaction’s fee/kB.

Given that blocks have a limited size, miners choose available transactions to popu-

late the block based on maximising the total transaction fee, likely including trans-

actions with high fee/kB values1.

1Actually this is an example of a knapsack problem from the field of combinatorial optimisation
[31]. The problem is NP-hard. However, it is much more likely that large fee/kB transactions will
be included in the solution and heuristic solutions will likely include them anyway.

39



The question arises of if there exists a “no-man’s-land” of fee/kB that is high

enough to be propagated but low enough to never be included in a block, so never

pay the fee. I will leave that question, or the problem of finding the probability of a

transaction being included in a block given the minimum transaction fee to future

research.

40



Chapter 5

A Review of Prior Research

In this section we will conduct a literature review on the topic of finding the Bitcoin

P2P network topology. By exploring these papers chronologically, we will see how

methods have built on each other. This is also the best lens through which to observe

the recursive reactions of the researchers and developers, who sit on opposite sides

of the problem. The developers want to prevent inference of the topology to prevent

attacks and preserve the anonymity of its users. The researchers wish to study the

network for varied reasons including monitoring the health of the network, but also

in doing so provide knowledge of weaknesses to the developers so they can improve

the protocol. By studying the methods and how the developers react, we will be

able to gain some clarity on the best future path for approaching this problem.

The methods fall into two major categories. Idiosyncratic methods take ad-

vantage of some quirk in the Bitcoin protocol. Statistical methods use statistical

inference on timing measurements.

We can classify methods as node-specific or network-wide, depending on whether

they target a specific node to determine their peers, or infer the whole network

topology simultaneously. Of course a method that is node-specific can be made

network-wide by repeating it on every node, but it is a useful distinction to make.

In general network-wide methods can’t be scaled down to infer the peers of an

individual node.

We can also classify the methods as active or passive, depending on whether we

propagate transactions into the system or not. If a method involves sending messages

to nodes that don’t propagate into the network further than the recipients, then we

classify it as a passive approach; otherwise we would have to classify all methods

as active due to various messages that need to be sent between nodes, for instance

when forming a communication connection to become peers.

The chronology starts with a paper released in 2014 [8] by Biryukov, Khovra-

41



tovich and Pustogarov which introduced the possibility of deanonymising users (link-

ing addresses with pseudonyms) given knowledge of a node’s peers. Towards the end

of the paper, they propose a topology inference method based on how nodes learn

of new addresses, which was node-specific, passive, idiosyncratic, and quite invasive.

The first paper we look at took their concept and greatly refined it, providing the

first full implementation and a snapshot of the Bitcoin P2P network.

5.1 2015: Miller and 6 other authors

[20] Discovering Bitcoin’s Public Topology and Influential Nodes

In [20] Miller and 6 other authors developed a passive, network-wide, idiosyncratic

method of discovering the P2P network by exploiting a vulnerability in a way that

nodes stored known addresses of other nodes. The algorithms they developed were

extremely effective.

They developed CoinScope, a software for large-scale Bitcoin experiments, Ad-

dressProbe, an algorithm to discover the P2P network topology of Bitcoin, and a

decloaking method for discovering influential nodes that are well connected to hidden

mining pools. At the time, they discovered that only 2% of nodes were responsible

for relaying about 75% of the mining power.

Due to the success of these methods, and a worry that this would lead to

deanonymisation of the network, the protocol was changed to make the AddressProbe

algorithm infeasible in 20151.

5.1.1 Addresses and timestamps

The algorithm AddressProbe that they created relied on an old methodology the

Bitcoin protocol used to update timestamps associated with known addresses. Recall

from Section 3.2.2 that nodes keep a list addrMan of known addresses. Note that

this list contains all the node’s peers, as well as any other nodes that it is aware of.

Along with each address is an associated timestamp, which is used to keep track

of when that address was last seen and allows nodes to keep track of nodes that

drop out of the network. Each node also keeps a list of addresses they know their

peers have in their addrMan, which is purged every 24 hours. A node can send

a GETADDR request of addresses to a peer, who can repply with an ADDR message

containing up to 1000 entries from its addrMan . Before the 2015 patch, a set of

1https://github.com/Bitcoin/Bitcoin/commit/9c2737901b5203f267d21d728019d64b46
f1d9f3

42



rules were followed to update the timestamps in a node’s addrMan. While normally

peers send messages in both directions symmetrically, here is a case where nodes

distinguish between incoming and outgoing peers.

Timestamp updating rules

1. For outgoing peers, update the timestamp every time you receive any message;

2. For incoming peers, set the timestamp when the connection is made;

3. When learning any address through ADDR messages (including addresses of

outgoing and incoming peers), age the address by adding a two hour penalty

to the associated timestamp. If the address is already known, only update the

timestamp if the new timestamp is 20 minutes younger than the old one, and

age it two hours.

Normally, it is only permitted to send ADDR messages as a response to a GETADDR message

from a peer. To facilitate the propagation of new addresses through the network, it

is permitted to send an ADDR message without receiving a GETADDR message in two

situations.

Unsolicited ADDR rules

1. When receiving a new peer connection, send an ADDR message to a randomly

chosen peer, with information of only the new peer;

2. When receiving an ADDR message with fewer than 10 entries, send the same

ADDR message to two randomly chosen peers, as long as you believe those

peers already have that information in their addrMan. Also do not age the

timestamp.

This way new node addresses flood the network, and when existing nodes become

peers the timestamp of those peers is updated to those nodes’ other peers by prop-

agating some distance into the network.

5.1.2 Inference

Consider a node v1 and its outgoing peer v2. A new node vn joins the network, and

connects to v1 at some time t. v1 sends an unsolicited ADDR message to v2 containing

address vn and timestamp t. From the timestamp updating rules, we have:

43



• vn’s timestamp of v1 will always be (nearly) current as long as the connection

is maintained;

• v1’s and v2’s timestamps of vn will stay at t, unless they hear of a timestamp

for v1 more recent than t+20mins from another node.

We set up a node vm, and connect to all three nodes. We send GETADDR messages to

all nodes in the network, and record all the timestamps in their response ADDR messages.

We have no knowledge of the time t or the connections, and we wish to infer the

connections. If a timestamp is less than 2 hours old, we call it current. If a node vi

has a timestamp for vj that is different from every other node’s timestamp of vj, we

say vi’s timestamp of vj is unique. Consider the following three outcomes:

vn v1 v2

vm

1. If vn sends vm a timestamp of v1, it will be current;

2. If vn sends vm a timestamp of v1, it will be unique, as vn is constantly and

independently updating its timestamp of v1;

3. If v1 and v2 send vm timestamps of vn, it is possible that they will be the same.

For instance if they are both still set to the connection time t.

From these three outcomes, we can deduce three general inference rules for any

two nodes vi and vj.

Inference rules

1. If vi’s timestamp of vj is not current, then there is no connection from vi to

vj. This comes from the contrapositive of outcome 1;

2. If vi’s timestamp of vj is current and unique, then there is a connection from

vi to vj. This comes from considering both outcomes 1 and 2;

3. If vi’s timestamp of vj is current but not unique, then we are unsure whether

there is a connection between vi and vj. This comes from outcome 3, consid-

ering that both v1 and v2 report the same timestamp.

44



5.1.3 AddressProbe

Miller et al. represent this information in the following matrix. We indicate the age

of the timestamp with “ts”. vi→vj indicates vi has an outgoing connection to vj,

vi→/ vj if vi does not have an outgoing connection to vj, and vi→? vj if we are not sure.

Note that if we just desire the undirected graph, we only need one → connection in

a table entry.

vj ’s ts of vi

vi’s ts of vj ts ≥ 2hr
ts < 2hr

& unique

ts < 2hr

& not unique

ts ≥ 2hr
vi→/ vj
vj→/ vi

vi→/ vj
vj→vi

vi→/ vj
vj→? vi

ts < 2hr

& unique

vi→vj
vj→/ vi

vi→vj
vj→vi

vi→vj
vj→? vi

ts < 2hr

& not unique

vi→? vj
vj→/ vi

vi→? vj
vj→vi

vi→? vj
vj→? vi

All that is left to do given this analysis is to send multiple GETADDR requests to

all nodes on the network. The researchers built an infrastructure called CoinScope

to manage these experiments in collecting the data.

5.1.4 Accuracy

The researchers set up five validation nodes, and ran experiments every 2 minutes

for 18 days. The accuracy statistics reported in Figure 5.1 quote directly from the

confusion matrix, and take the average values across all the experiments with 95%

confidence intervals. True negatives are not reported as they are not of as much

interest and can be calculated from the other values and number of total reachable

nodes.

Figure 5.1: Accuracy statistics for AddressProbe

While these are initially good statistics, the researchers explored how they could

reduce the number of false negatives. They concluded that it was likely because of

45



under-scraping: not collecting all the addresses from each node in each as nodes send

at most 1000 entries selected at random in ADDR messages. Figure 5.2 shows that

when combining the results from consecutive experiments, the number of false neg-

atives could be dramatically reduced; and the number of ADDR messages required to

scrape all the addresses from the nodes. From this they concluded to combine results

from multiple experiments, and collect 24 ADDR messages per node, not exceeding

this to limit bandwidth. The researchers did not report results from combined ex-

periments, which would have been useful to see if this would preserve the good true

and false positive rates. However, we can assume that the results would have shown

these methods to be very accurate.

(a) Distribution of persistence of false
negatives across subsequent experiments.

(b) Distribution of ADDR messages re-
quired from each node.

Figure 5.2: Study of under-scraping.

5.1.5 Topology results

There were some interesting results in the 2015 snapshot of the inferred topology.

While most nodes had a degree in the range of 8-12, which matched the expecta-

tions of the Bitcoin protocol, there were some significant outliers. They found that

extremely high degree nodes with connections in the multiple thousands persisted

over the 18 days of experimentation.

Most strikingly they found that, even when excluding these outliers, the Bitcoin

P2P network is most probably not a random graph. They tested various properties

of random graphs and found that the observed graph was statistically significantly

different. While there are certainly random elements to the way that connections

are formed as described in Section 3.2.2 it does not truly form a random graph as

intended.

46



5.1.6 Discussion

AddressProbe is clearly a very powerful method, even detecting directed edges.

Moreover, it is fairly non-invasive and quick to perform. This is likely why the

Bitcoin Core developers changed the method for updating timestamps to render

this algorithm useless. It is unclear why the original timestamp updating rules were

created like that in the first place. It could be, as for many other features that are

exploited in other methods, a relic of how the protocol was first established. It could

have seemed like a reasonable way to update timestamps, without considering this

vulnerability.

We can point out some flaws in this method that will lead to incorrect inference.

This method will give false positives of vi→vj when

• the connection from vi to vj was recently broken;

• knowledge of a new connection vj→vi is recent, but hasn’t propagated far into

the network. vj would update its timestamp of vi quickly, leaving a timestamp

of vi in vj’s addrMan that is potentially unique. This would signal vi→vj when

it is not necessarily true;

and false negatives, arising from missed vi→vj recognition, because

• nodes may evict addresses from their addrMan lists, as its size is finite;

• ADDR messages only give a random subset of addresses in the addrMan of the

node that is being requested, as discussed in the previous section.

Further, this method is limited in that we can only detect the outgoing connec-

tions from the reachable peers in Vp to the unreachable peers in V \Vp. While it may

detect if these peers exist, we cannot detect incoming connections from unreachable

peers to the reachable peers.

5.1.7 Influential nodes

Miller et al. also developed two very similar algorithms: Candidate Selection (CS)

and Influence Validation (IV) to analyse which nodes in the Bitcoin P2P network

were the origin of new blocks, called influential nodes. These nodes are likely to be

gateway nodes to mining pools, as they represent significant amounts of computa-

tional power.

CS and IV took advantage of two features of the Bitcoin protocol. The first

that nodes drop conflicting transactions, that is transactions that spend from the

47



same UTXO as one they have already recorded in their memPool. The second is the

InvBlock technique described in Section 3.2.4.

In these algorithms we partition nodes into n sets V1, . . . , Vn. We generate a set

of n mutually conflicting transactions T = {tx1, . . . , txn}. That is, all transactions

txi ∈ T spend from the same UTXO, so at most one transaction in T can be accepted

in any given node, and eventually end up in the blockchain. For each node in a set

Vi, we use the InvBlock technique to prevent them from seeing all transactions in

T but txi for 2 minutes. We do this because when we send out transactions, they

are not received immediately2, and we don’t want transactions to designated for

one set (tx1 for V1) to end up anywhere in another set. Within two minutes, once

we are sure that each set Vi is isolated from all transactions except txi, we send all

nodes in each set Vi their designated transaction txi. After the two minutes has

elapsed, each node in set Vi will not accept any other transaction txj ∈ T \ {txi}, as

it conflicts with the transaction txi which they have stored in their memPool. One

transaction tB ∈ T is eventually included in a block which is mined by a miner in

VB and included in the blockchain. We are unsure exactly which node in VB, so we

increment a “win” score of all the nodes in VB by one.

Initially in CS, this process is repeated over many randomly generated sets. The

influential nodes end up having disproportionately high scores, as they are included

in winning sets more often because of their contribution of computational power to

those sets. In IV, the influential nodes are designated their own sets of size one, with

all non-influential nodes placed in one large set. This method verifies the proportion

of computational power in each influential node identified in CS, by running this

algorithm for a long time over those sets.

The researchers showed that 2% of nodes won 189 out of 258 trials. This gives a

99% confidence interval between 66% and 80% for the percentage of computational

power in the 2% most influential nodes. Transactions that are propagated to this

small set of nodes are therefore much more likely to be included in the blockchain.

The researches also noted that the influential notes did not contain any notable

features in terms of their topology. For instance having a very high degree or forming

exclusive communities.

2There is delay known as latency between any two nodes for any message to send

48



5.2 2016: Neudecker, Andelfinger, and Harten-

stein

[21] Timing Analysis for Inferring the Topology of the Bitcoin Peer-to-

Peer Network

AddressProbe having been disabled by the Bitcoin protocol developers, researchers

started looking into statistical methods of inferring the Bitcoin P2P network topol-

ogy that didn’t rely as heavily on idiosyncrasies in the Bitcoin protocol that could

be disabled by the developers. Neudecker, Andelfinger and Hartenstein developed

a active, node-specific, statistical method for discovering the Bitcoin P2P network

topology by modelling propagation delay. They were able to achieve precision and

recall of approximately 40%. However, the modelling they used was still in some

way idiosyncratic, in that their assumptions were based on the known distributions

that nodes use to delay sending transactions. Since they developed this method,

the delay distributions built into the protocol were changed to limit the amount of

information that could be gained by this kind of analysis.

The method is based on a Bayesian analysis of measurements of the arrival times

of transactions at every node, given the transaction came from the node whose

peers we wish to infer. Given these measurements, the researchers calculated a

likelihood of delay times given a minimum path length. They also constructed a

prior distribution of minimum path lengths between two nodes given the assumption

of an Erdos-Renyi random graph. Combining these gave a posterior distribution for

the minimum path length given the distribution times. A minimum path length of

one would correspond to them being peers.

However, when describing their model, they did so in frequentest terms. We will

describe the model with these terms in the explanation as they did, using terms

such as maximum likelihood estimation, and then correct them in the discussion.

Figure 5.3: Experiment setup.

vc vi
unknown

connections

vn

vj

v1

vm

...

...

They set up the experiment as in Figure 5.3 they established a creation node vc

49



and monitor node vm, and connected both to all known nodes. By sending a new

transaction from vc to a target node vi, they created a situation where vi was a known

source node of a transaction in the network. Then they could make measurements

at the monitor node vm.

5.2.1 Timing measurements of transactions

For a transaction txk originating at source node vi, the monitor node receives the

message from each node vj at reception time trkij. The researchers were able to

accurately measure the latency between the monitor node and all other nodes. La-

tency is the delay time to send data between two points over the internet. Latency

was subtracted from the reception times to give sending times tskij. The sending

time from the source node was subtracted from these to give the propagation delay

measurements

δkij = tskij − tskii.

Here δkij = ∅ if message txk did not have source node i. From this the set

∆vi,vj =
⋃
k

{δkij} ∪ {δkji}

contains all delay measurements between two nodes vi and vj where a transaction

originated at one of them.

5.2.2 Propagation delay model

Neudecker et al. propose the following analytical model for propagation delay in a

network using a gossip protocol. Assume an undirected graph G = (V,E) where V

is the set of nodes and E the set of edges. Define a random variable x(e) such that

x(e) = 1 if the edge e ∈ E exists and 0 otherwise. Assume that the graph’s edges

can be modelled as an Erdos-Renyi random graph, which define probabilities for

each edge P (x(e) = 1) existing independently. We measure time in discrete units

(milliseconds).

For any two nodes, there exist paths which are sequences of edges (e1, . . . , en)

that connect them (where edges are not repeated). Each path has a specific length

l = |{e1, . . . , en}|. Define the set of paths with length l as c(l), called the class

of paths of length l. Each class has an associated discrete random variable Dl

modelling the delay distribution. The probability mass function P (Dl = t) defines

the probability of receiving a message at time t after it is initially sent along a path

of length l at time 0. Assume we know the distribution of D1.

50



Now define zl as the actual number of paths of length l between two nodes, and

z∗l as the maximum possible number of paths of length l between two peers.

z∗l =

(
|V | − 2

l − 1

)
︸ ︷︷ ︸

choices of nodes

· (l − 1)!︸ ︷︷ ︸
arrangement of nodes

. (5.1)

We can define the probability of the existence of a specific path in c(l) as pl :=

P (x(e) = 1)l. So the probability that there are k paths in lass c(l) between two

nodes is

P (zl = k) ≈
(
z∗l
k

)
pkl (1− pl)z

∗
l −k. (5.2)

This is an approximation because the existence of paths that contain the same edges

are not independent. However for l = 1, 2 this equation is exact. Consider two nodes

v1 and v2. There is only one possible path of length 1 between two nodes. Given n

nodes, there are n − 2 possible paths of the form {(v1, vi), (vi, vn)}, of which none

of them share edges as there is only one intermediary node. However this cannot

be said for path lengths greater than 2. For instance consider with 5 nodes the

paths {(v1, v2), (v2, v3), (v3, v5)} and {(v1, v2), (v2, v4), (v4, v5)} which share the edge

(v1, v2).

Now consider a given class c(l) between two nodes. Assume that zl = n. Sending

a message between the two nodes, we draw n samples from Dl, (D1
l , . . . , D

n
l ). Define

D̂l = miniD
i
l , the fastest propagation time over all the n paths. The conditional

distribution of D̂l is given by

P (D̂l = t|zl = n) = P (Dl = t)︸ ︷︷ ︸
1 path takes t

· P (Dl ≥ t)n−1︸ ︷︷ ︸
other paths take longer

·n. (5.3)

Applying the law of total total probability we have for a class c(l)

P (D̂l = t) =

z∗l∑
n=1

(
P (D̂l = t|zl = n)P (zl = n)

)
(5.4)

which defines the distribution of the fastest time delay for a message to pass across

all paths of length l.

Now to find the fastest delay over all paths, defined by a random variable D, we

have

P (D = t) =
∑
l≥1

(
P (D̂l = t)

∏
l′ 6=l

P (D̂l′ ≥ t)

)
. (5.5)

However for a given pair of nodes, there exists a shortest path length Cmin, and so

51



the distribution of the delay should only take into account lengths that are Cmin and

longer, with the probability contribution of shorter paths set to 0. We calculate the

probability of k paths in c(l) given at least one path exists

P (zl = k|zl > 0) =
P (zl = k, zl > 0)

P (zl > 0)
=

P (zl = k)

1− (1− pl)z
∗
l

(5.6)

We also create the prior distribution for Cmin before we use our data.

P (Cmin = l) = P (zl > 0) ·
∏
i<l

P (zi = 0)

= (1− (1− pl)z
∗
l ) ·
∏
i<l

(1− pi)z
∗
l (5.7)

From here we can calculate P (D = t|Cmin = l) by using Bayes’ theorem, con-

structing the joint distribution P (D = t, Cmin = l) by disregarding P (D̂i = t) for all

i < l and calculating P (D̂l = t) using P (zl = k|zl > 0) rather than P (zl = k) in the

relevant steps.

The researchers validated their model for D on two simulation sets: a random

network with 1000 peers, an average of 8 connections per peer and uniformly dis-

tributed latency D1 between 50 and 100ms; and a random network with 6000 peers,

an average of 16 connections and uniformly distributed latency D1 between 100 and

300ms. Distributions for D2, D3, . . . were calculated as convolutions of D1. The

results are shown in Figure 5.4. They found that their model matched the empirical

distribution extremely well for small delays, but then diverged. They explained this

as an effect due to the assumption of independent existence of paths, which is true

for l = 1, 2 (and so matches small time delays) but not true for longer paths. The

problem of fixing this model to solve it exactly for longer path lengths was left for

future research.

Figure 5.4: Models and true distributions P (D = t) on simulations.

52



5.2.3 Inference of shortest path length

Given the above model, the researchers calculated the maximum likelihood estimate

(MLE) l̂ of Cmin, the shortest path length between two nodes v1, v2 as follows:

The likelihood is calculated as

L(Cmin = l|∆v1,v2) = P (Cmin = l) ·
∏

δ∈∆v1,v2

P (D = δ|Cmin = l) (5.8)

with the MLE taken at the maximum:

l̂ = arg max
l
L(Cmin = l|∆v1,v2). (5.9)

The researchers claim convergence of l̂ to Cmin, and provide a certainty distribution

for l

P (Cmin = l|∆v1,v2) =
L(Cmin = l|∆v1,v2)∑
i≥1 L(Cmin = i|∆v1,v2)

(5.10)

which assigns probabilities to each path length being the shortest given the data.

Where the highest probability is assigned to l = 1, this would correspond to the two

nodes being peers.

In a simplified simulation of the Bitcoin network, this method achieved precision

of near 100% and recall of 90% within 12 observations.

5.2.4 Model of delay in the Bitcoin P2P network

Neudecker et al. developed a parametric model to construct delay distributions on

the Bitcoin P2P network. To do this they approximated three distributions: latency

between nodes based on geographical distance; delay between a client receiving and

sending information broken into intentional and unintentional parts; and node degree

distribution which they achieved by minimising square error between simulated and

measured propagation time. The delay distributions P (D = δ|Cmin = l) were then

calculated by simulation.

Figure 5.5 shows in the dotted lines examples of P (D = δ|Cmin = l), the condition

delay distributions given minimum path lengths. This is determined by the three

distributions mentioned above. The value of certainty of the MLE P (Cmin = l̂|∆v1,v2)

is given as the solid line. Note that the certainty in our solution drops as there is more

overlap in the delay distributions. Intuitively, this is because if two distributions are

very similar, it is harder to know which distribution the observations come from.

These distributions can be made to overlap through altering the Bitcoin protocol to

include random delays in a node propagating transactions to its peers. This delay

53



Figure 5.5: Conditional delay distributions and certainty w.r.t. observed delay.

purposefully introduced in the protocol is known as trickling, and it is done so that

these delay distributions overlap as more, so the certainty in a solution decreases.

This is how the protocol developers are able to limit the leaking of information by

introducing delay into the system.

5.2.5 Accuracy

The researchers created two nodes with 50 peers each, and used them to create

transactions. One monitor node collected timing measurements from all other nodes.

For a pair of peers v1, v2, n observations were collected in the set ∆v1,v2 . Given the

high certainty of distribution in lower time delays, the smallest element of ∆v1,v2 ,

δmin was taken. Using the theoretical distribution derived from the model and some

threshold hyperparameter s, if

P (D > δmin|Cmin = 1)n > s

then an edge between v1 and v2 is predicted.

The researchers found that changing s tweaked the precision and recall values

for this method, with values of 40% achievable in both with an appropriate se-

lection of s. They also found that higher recall and precision were achieved with

more observations, up to 6 observations per pair, after which no improvement was

achieved.

5.2.6 Discussion

While this method wasn’t hugely successful in terms of accuracy, it did provide

a proof of concept of using timing measurements to reconstruct the graph. 40%

precision and recall is still significantly better than random guessing. However, this

method still rests to some degree on idiosyncrasies in the Bitcoin protocol, namely

54



the purposeful trickling delays that nodes employ during transaction propagation.

The researchers showed themselves that this method could be made redundant by

optimising the trickling mechanism, which has since occurred so this method no

longer works well.

An assumption made in the propagation delay model is that the network is

a random graph. However Miller et al. showed in [20] that the topology of the

Bitcoin P2P network (at the time of their experiments) was not random, even when

disregarding anomalous high degree outliers.

Throughout the entire methodology, there is an assumption of independence of

paths and connections given the timing data. While this may be true for paths that

are of length 1 or 2 in the context of ignoring all others, there is no doubt that

information to be gained by considering other connections in the network as paths

and therefore timings are not be independent in general.

There were several limitations to the model of the Bitcoin P2P network that

they proposed. They acknowledge this about the estimation of latency based solely

on geographical distance:

“The model does not account for latency introduced by temporal behav-

ior such as link saturation. It also cannot make any statements on the

connection quality between the specific user and its ISP3, as the empirical

model relies solely on the distance. Furthermore, the distance between

two peers on the earth’s surface may not reflect the routed distance, e.g.,

through submarine optic fiber cables.”

Further, in the inference of node degree distribution, the researchers proposed

a specific parameterisation that minimises square error between propagation delay

in a simulated network and the observed propagation delay, as the real node degree

distribution is unknown. This parameterisation minimises error that is itself par-

tially explained by any incorrect parameterisation of the estimation of latency and

client delay, rather than just modelling node degree. This method cannot be used

to predict node degrees, and does not reflect the anomalous behaviour observed by

some nodes in the paper [20].

A significant issue with their analysis, as mentioned in the introduction of this

section, is that they employ a frequentest approach to a Bayesian model. The only

mention of Bayesian terminology is in describing the distribution of Cmin as a prior.

he likelihood is calculated as per Equation 5.8. However this equation includes

the prior distribution of Cmin, and so this quantity is proportional to the posterior

3internet service provider

55



distribution P (Cmin = l|∆v1,v2), which makes l̂ (calculated in 5.9), not the MLE

as they have suggested, but rather the maximum a posteriori (MAP) which is the

mode of the posterior distribution.

Readers familiar with Bayesian statistics will understand that this is not just

an abuse of terminology, but also requires a different interpretation of the results.

Under a Bayesian framework, we create a prior belief for the path length (here

the distribution of path lengths in an Erdos-Renyi graph), and update that belief

with data that we collect, which here is the timing measurements. The result is a

probabilistic distribution for the minimum path length, which should not be used to

generate point estimates as is done in this analysis by claiming that information for

the minimum path length is given by the MAP value. The MAP is rarely used in

analysis because point estimation is not useful in a Bayesian framework. There are

many ways to derive a best guess for the minimum path length, but it requires more

thought than taking the mode of its distribution. This could possibly be reflected

in the accuracy of the results.

5.3 2018: Grundmann, Neudecker, and Harten-

stein

[32] Exploiting Transaction Accumulation and Double Spends for Topol-

ogy Inference in Bitcoin

Given that the timing analysis method was made infeasible by the change of trickling

mechanisms, Grundmann, Neudecker and Hartenstein proposed two new methods

for finding the topology of the Bitcoin P2P network. The first is an active, network-

wide, idiosyncratic approach based on the trickling mechanism nodes use to delay

sending transactions to their peers. While theoretically possible, it is far too ex-

pensive to run, and at an affordable cost they were only able to achieve a recall of

10%. The second method is a passive, node-specific, idiosyncratic method based on

the way that nodes drop conflicting transactions. It was much more successful with

87% recall and 71% precision.

5.3.1 Transaction queues

Because of analyses similar to the previous paper, Bitcoin clients include trickling

mechanisms; purposefully delaying transaction messages in order to impede timing

inference. In the Bitcoin protocol, every node keeps an outgoing queue for each

peer. New transactions are added to every queue whenever they are received or

56



created by the node. The queues of transactions are broadcast to the respective

peers independently at times following an exponential distribution. The next time

a queue is sent is at

t = current time− log(1− X

248
) · average interval seconds · 1, 000, 000 + 0.5,

where all measurements are in microseconds, X is drawn from a uniform distribution

on [0, 248−1] and average interval seconds is 2,000,000 for outgoing connections

and 5,000,000 for incoming connections. So reception of transactions can be modeled

as a Poisson process. The maximum number of transactions that are sent is 35. A

new sending time is calculated each time the transactions are sent to a peer.

5.3.2 Inference by transaction accumulation

Figure 5.6: Edge inference using transaction accumulation4

Consider a setup as in Figure 5.6. We have a monitor node vm connected to three

nodes va, vb and vc that we want to examine. Assume that these nodes comprise

the entire network. We create three non-conflicting transactions ta, tb and tc to sent

simultaneously from vm to only va, vb and vc respectively. Consider the scenario

where vb is connected to va and vc, but va and vc are not connected.

We examine the situation in which node va relays tc to vm. As va and vc are not

peers, vc must first send tc to vb, after which vb can relay tc to va, then va sends tc

to vm. When vb sends tc to va, it also sends tb which is earlier in the queue (or tb is

sent as part of an earlier queue). So either va sends tb to vm in an earlier message,

or tb and tc are sent in the same message. There is no situation in which tc is the

sent alone as the earliest message. Taking the contrapositive gives us our first rule:

If node va sends an INV message with tb alone as its first INV message,

then va and vb are peers.

4from [32]

57



From the above scenario, notice that tb is always sent in va’s first message to vm,

giving us our second rule:

If node va’s first INV message to vm has multiple transactions, then at

least one of the nodes associated with those transactions is a peer of va.

There are clear limitations to this method in practice. If, for instance, we do not

connect to node vb (as we may miss one of thousands of nodes), and so do not send

transaction tb, then we will send transaction tc to node vc, which will then be sent

to vb, then va, then back to vm. We may register that va sends transaction tc alone

and conclude that va and vc are peers when that is not the case.

We also cannot guarantee that we can send all the messages simultaneously and

that we have perfect knowledge of latency, so even if vm does connect to vb, there

is no guarantee that tb will reach vb from vm before tc from vc; which may lead to

more false positives if va receives tc before tb.

Consider also the situation where va, vb and vc are all peers. Because of the

Poisson process that transaction propagation follows, tb may travel from vb to vc to

va before it travels directly from vb to va, so it may take multiple repetitions before

we can deduce that va and vb are peers.

Given around 10,000 reachable nodes [23], and that there is a minimum transac-

tion fee necessary for nodes to propagate a transaction, this method is very expen-

sive. The researchers propose Variant DSi, where i sets of conflicting transactions

T1, . . . , Ti are created. Within each set Tj, all transactions spend from the same

UTXOj, so they are conflicting. Between the sets, tj ∈ Tj, tk ∈ Tk, tj and tk are not

conflicting, as they spend from different UTXOs. All transactions are still unique,

but the experimenter only has to pay for i transactions per observation instead of

10,000. However this also means that nodes will drop most transactions they receive,

which makes inference much harder and causes false negatives.

The authors ran variant DS3 was run on the Bitcoin testnet, connecting to about

520 nodes and used 5 nodes as validation targets. The researchers were able to

achieve a precision of 67% and recall of 10% after 50 observations. They noted

that due to the small sample size, these are only rough estimates of the recall and

precision of the method. This result is equivalent to there being 2600 possible edges,

of which 20 are real, and them finding 2 real edges and 1 false edge. This is clearly

not a good method.

5.3.3 Inference by double spends

Grundmann, Neudecker and Hartenstein developed a second method due to the poor

performance of the first, and because thy desired a node-specific method as it would

58



allow for more accurate validation. Further, they reasoned it would be the method

that an adversary would prefer for an attack on a specific node.

Figure 5.7: Edge inference using double spends5

Consider our monitor node vm, nodes va, vb and vc as well as a target node vT

connected as in Figure 5.7. We connect vm to all nodes and simultaneously send

mutually conflicting transactions ta, tb and tc to va, vb and vc respectively.

Node vc will send tc to vb, which will drop it as it conflicts with tb. Node vT

will either receive tb or ta first, and drop the other one. Node vT will then send

that transaction to vm. This gives us the rule: the target node will send one

transaction corresponding to one of its peers. If we repeat this for many

observations, we should be able to infer all the peers of vT .

There are similar limitations to this method. If for some reason we do not connect

vm to vb, then tc may be sent from vc to vT to vm, which would give us a false positive

that vT and vc are peers. If we do not send all transactions simultaneously, there

may be a situation where vc sends tc to vb before it receives tb from vm, which may

also lead to a false positive. The researchers propose three variants of this basic

algorithm to address these issues.

Variant Count

In the false positive cases mentioned above, the transaction tc must be propagated

at least twice before it reaches vT . This is a slower process than ta being propagated

directly to vT from va. So we would expect vT to receive ta more often than tc.

This would be reflected in an experiment with many observations, where we would

receive a positive signal for va being a peer more often than vc. So we require that

the number of times that a node is identified as a peer to be greater than some

threshold count.

5from [32]

59



Variant Ignore

In the case that transactions are not able to be sent from vm simultaneously, we may

have situations where nodes drop the transactions they are sent, as they conflict

with other transactions that have been forwarded to them before their allocated

transaction can reach them. In the above scenario, suppose transaction tc is sent

from vm to vc, and vc forwards tc to vb before vb receives tb from vm. Node vb would

drop transaction tb, and forward tc onto vT . In the case that vT sends transaction

tc to node vm, we would also have that node vb sends transaction tc to vm. So in

this variant, we ignore the inference (that vT and vc are peers) if we receive the

corresponding transaction from any other node but vT .

Variant Suppress

Using the same example, if we have inferred that vT and vb are peers, then we may

wish to create a method from preventing the same inference in subsequent observa-

tions. This is because there is at most one peer that can be infered per observation,

which would lead to these repetitions being slow, expensive or even pathological

in the case that certain nodes follow protocols for forwarding transactions that are

much faster than other (or if they have negligible latency with the target node vT ).

We wish to suppress peer vb that has already been inferred, which would require:

1. that node vT drops transaction tb in all further iterations of the experiment;

2. that node vb is prevented from forwarding on any other transactions that we

introduce—to prevent false positives.

The researchers suggest the following method to meet these requirements. Con-

sider two UTXOs, UTXO1 and UTXO2. Node vm sends the following transactions simul-

taneously:

1. transactions ti with shared (and so conflicting) input UTXO1 individually to all

respective nodes i, i 6= b, v;

2. transaction tv with input UTXO2 to node vT ;

3. transaction tb with inputs UTXO1 and UTXO2 to node vb.

The first set of transactions follows the original method. Now node vT receives

tv which conflicts with tb as they both spend from UTXO2, so node vT will always

drop tb. This meets the first requirement. Transaction tb also conflicts with all

other transactions ti as they spend from UTXO1, so node vb will always drop other

transactions ti, and so never forward them on to vT . This meets the second condition.

60



5.3.4 Accuracy

The researchers validated this method on the Bitcoin testnet; fully connecting the

monitor node to all 500 nodes and inferring peers of five validation nodes using 50

iterations in each experiment. Using a combination of Suppress and Ignore, they

were able to achieve 60% recall and 97% precision. Using just the Supress variant,

they were able to achieve 87% recall and 71% precision, only paying 99 transaction

fees.

5.3.5 Discussion

The transaction accumulation method didn’t provide very good results, however it

showed that at least some information could be gained in this way. The double

spending method showed significantly better results.

It should be noted that both methods could be rendered unusable with small

changes to Bitcoin protocol. For instance, if transactions were not sent in the order

that they are received, but randomly, then the first method could not be used.

If nodes still propagated conflicting transactions rather than dropping them (and

leaving it up to block miners to ensure no double spends), then the second method

would not work.

The researchers acknowledged in both methods that if we cannot synchronise

the timing of sending transactions to their respective nodes, then we may infer false

positives. As noted in other papers, there is a way around this using the InvBlock

technique. In the basic double spend example, if we were to send INV messages

to the nodes containing all transactions except their designated one, then never

respond to the resulting GETADDR requests, those nodes would not be able to receive

those transactions for at most 2 minutes, allowing us to synchronise the timings of

sending the designated transactions.

5.4 2018: Delgado-Segura and 6 other authors

[28] TxProbe: Discovering Bitcoin’s Network Topology Using Orphan

Transactions

Soon after, the next paper by Delgado-Segura and 6 other authors (4 of who were

authors of the first paper [20] in this chapter) described TxProbe, an active, idiosyn-

cratic method to determine the topology that is designed to be network-wide, but

can easily be adapted to be node-specific.

61



It is extremely effective, with experiments yielding 100% precision and ∼95%

recall. However it is also extremely invasive. A full implementation would involve

the disabling of important functionalities of the Bitcoin protocol for the duration of

an experiment, which they estimated to take 8.5 hours. Specifically, it makes use of

the way the protocol handles orphan transactions, and in doing so disables their use

in any node they are investigating. For this reason, the researchers only validated

TxProbe on the testnet, and avoided any tests on the main Bitcoin P2P network. If

an adversary were to try to perform a network-wide probe of the network, it would

also be very easy to spot.

5.4.1 Orphan transactions

Consider a scenario where there are two transactions tx1 and tx2, where tx2 spends

the output from tx1, and they are created in quick succession. Due to propagation

delays on the network, there is a positive probability that some node v will receive

these transactions in the wrong order. It receives tx2 first, but can’t treat it as a

normal transaction. It doesn’t spend an UTXO (that would be tx1’s output, but v

doesn’t know about that yet), but it also isn’t a double spend, because it doesn’t

conflict with any transaction in its own memPool list of transactions it has seen,

or the blockchain history. So v classifies tx2 as an orphan transaction. It doesn’t

propagate it further into the network, but does store it in a data structure called

MapOrphanTransactions, so that in the case its parent transaction does arrive, it

doesn’t need to re-request it from the network and use up bandwidth. In the event

that the parent transaction tx1 does arrive at v, it can verify that tx2 does spend

a legitimate output, so removes tx2 from MapOrphanTransactions and propagates

both transactions further on into the network.

There are two properties of the protocol’s method of handling orphan transac-

tions that are key to the TxProbe algorithm:

1. when a node receives a transaction that it clasifies as an orphan, it will not

forward the transaction onto its peers, in case it is not legitimate;

2. when a node has a transaction in its MapOrphanTransactions structure, then

it will not request that transaction in GETDATA messages when receiving INV

messages containing a hash of that transaction. This is to preserve bandwidth.

5.4.2 Inference using orphan transactions

Consider a network comprised of a monitor node M that is connected to two nodes

A and B which are peers, as in Figure 5.8. Node M wishes to infer if A and B are

62



peers. Create two conflicting transactions: the parent transaction txp and the flood

transaction txf . We simultaneously send txp from M to A and txf from M to B.

They will both drop the other transaction if they receive it from the other node. We

then create a marker transaction txm that spends an input that is the output of the

parent transaction txp. As A has the parent transaction recorded in its memPool,

it will regard the marker transaction txm as a normal transaction, and send it onto

B. Node B does not have txp stored in its memPool, and so will regard txm as an

orphan transaction, and not forward it onto M. However, if M sends an INV message

containing txm’s hash to B, B will not request txc with a GETDATA message, as it

is already in B’s MapOrphanTransactions list. If A and B are not peers, B would

not have txm stored as an orphan transactions, and so will request txm in the same

scenario.

Figure 5.8: Basic inference principle with orphan transactions6.

When any other nodes are present in the network, this method may lead to false

positives. Consider if A and B are not peers, but they are both peers with some

node C. Transactions txp and txm may be sent from M to A to C, and so B may

receive txm as an orphan node from C, and will not request txm when sent the INV

message from M. This would lead us to conclude that A and B are peers when it is

not the case. So we need this method to have three properties.

1. isolation: txp should not propagate from the node we send it to;

2. synchronicity: in this example, A must receive txp at the same time that

B receives txf , otherwise one could forward their transaction to the other,

confounding the inference rule;

6from [28]

63



3. scalability: using this basic method with three transactions, we can only infer

the neighbourhood of one node. Many transactions would be needed to infer

the entire topology. We wish to find a way to achieve this more efficiently.

5.4.3 Displacing orphan transactions

This section describes the invasive property of TxProbe.

The size of MapOrphanTransactions is by default limited to 100 transactions at

any given time. This is likely so old orphan transactions, which for whatever reason

never had a parent transaction propagated, are eventually forced to be removed from

MapOrphanTransactions. For this experiment using thousands of transactions, we

must be able to guarantee that any transactions created are able to be stored, and so

we need a method of emptying the MapOrphanTransactions structure of any node

that we are examining.

The Bitcoin protocol has a strange quirk that allows us to do this. When the

number of transactions in MapOrphanTransactions exceeds the limit, some transac-

tions are randomly evicted, but they are not evicted uniformly. The node generates

a random number randomhash, then evicts the transaction whose hash is the closest

number that is larger than randomhash. This process is repeated until the number

of orphan transactions is within the limit. It is unclear why this method is used in

the protocol, rather than a method that would select transactions uniformly. This

procedure is easily exploitable.

We can create 100 mutually conflicting transactions whose hashes are very small

(by repeatedly resigning them), so we can displace all stored orphan transactions

in a given node with our new ones. We can check that all our transactions are

there by sending an INV message with all those transactions. If the node does not

send any GETDATA messages back, then we know that they have them all stored

as orphan transactions, populating the entire MapOrphanTransactions list. Now,

we send the parent cleanser transaction of those orphan transactions to the node.

The node now sees the orphan transactions as regular transactions, chooses one of

them to be legitimate (as they are are mutually conflicting), and propogates the two

further into the network and empties their MapOrphanTransactions list. We are

now guaranteed an empty list, which we can fill as part of an experiment.

Given that TxProbe requires thousands of orphan transactions as part of this

experiment, this process must be continuously repeated, 100 orphan transactions at

a time until all necessary transactions have been used. So for the entire duration of

the experiment, the MapOrphanTransactions structure on every reachable node in

the network is effectively disabled, as no new transactions will be able to be kept

64



in it without quickly being removed. The protocol allows for orphan transactions

as they are necessary to the healthy functioning of the network. Without them, all

transactions that arrive at a node in the wrong order will be discarded. This may

lead to many transactions not being able to be included in the blockchain, or at best

take up far too much bandwidth as transactions will have to be sent repeatedly to

each node before all transactions arrive in the correct order.

5.4.4 TxProbe

Delgado-Segura et al. developed the TxProbe algorithm to have the isolation, syn-

chronicity and scalability properties. It requires several iterations of the following

procedure.

Figure 5.9: Transactions created for TxProbe7.

1. Partition the network: We label one group of nodes the source set {a1, . . . , an},
having size n, and the others the sink set {b1, b2, . . . }. The aim is to infer all

connections between source and sink nodes.

2. Create cleanser transactions: We create one transaction txcleanse with one

output, and use that output as the input of n mutually conflicting squatter

transactions txs1 , . . . , txsn spending from UTXO0 which are individually resigned

until they have sufficiently small hashes.

3. Send squatter transactions: We send all squatter transactions to all nodes

in the sink set. As these nodes are not aware that they are conflicting yet,

they are all accepted as orphan transactions, and displace all current orphan

transactions.

4. Cleanse MapOrphanTransactions: We send txcleanse to all sink nodes. The

squatter transactions cease being orphan transactions. One squatter transac-

tion will be accepted, and the others will be discarded as double spends. The

MapOrphanTransactions structure in each of the sink nodes is now empty.

7from [28]

65



5. Create inference transactions: We create n+1 mutually conflicting trans-

actions: n parent transactions txp1 , . . . , txpn and 1 flood transaction txf . We

also create n marker transactions txm1 , . . . , txmn , each having spending the

output of their respective parent transaction (for example: tm2 has input that

spends the output of tp2).

6. Isolate the network: We wish to ensure that each parent transaction txpi
is isolated to its respective source node ai, and that the flood node is isolated

to the sink set. Consider the InvBlock procedure from Section 3.2.4. We

connect our monitor node m to all nodes, and send out an INV message to all

nodes containing hashes of all the txpi and the txf transactions depending on

which we want to block in which node. Each node will respond with a GETDATA

message that m will ignore. All nodes will then wait at least 2 minutes before

sending a GETDATA message to any other nodes for the same transactions. This

isolates the transactions as required.

7. Send inference transactions: Now we have a window of slightly less than 2

minutes to send the transactions. We send the flood transaction txf to nodes

in the source set, and wait a few seconds for it to propagate. We then send

the parent transactions txpi to their respective source set nodes ai, wait a few

seconds, then send the corresponding marker transactions txmi
.

8. Request the marker transactions: Each marker transaction txmi
will be

seen as a regular transaction by its source node ai, so ai will propagate txmi
to

all of its peers. We have guaranteed that no other nodes have seen txpi , and so

all peers of ai will recognise txmi
as an orphan transaction, and not propagate

it further. We wait a few seconds after the previous step for ai’s to propagate

the txmi
’s, then send INV messages to all sink nodes containing hashes of all

the marker transactions. We collect all the GETDATA message responses.

9. Inferring links: If a sink node sends a GETDATA request containing the

hash of a marker node txmi
, then it does not have that transaction in its

MapOrphanTransactions structure, and so does not have a link with ai. If a

sink node does not send a GETDATA message containing the hash of tmi
, then

it is a peer of ai.

5.4.5 Partitioning the network

Each iteration of the TxProbe procedure gives the links between the source set and

sink set, but no internal links within those sets. So a number of iterations are

66



required, such that every pair of nodes is separated at least once. The source set

can contain at most 100 nodes, as this is the limit of orphan transactions that any

one node can store. The researchers propose the following partitioning method for

N reachable nodes:

Figure 5.10: Partitioning method8.

Create a grid of all known nodes. The width is w = min
(
d
√
Ne, 100

)
. The

height is h = dN
w
e. In each iteration we assign all nodes in a row or column to the

source set, until all rows and columns are exhausted.

If h > 100, then each source set associated with a column must be separated

into several iteration such that each node is included at least once and no iteration

contains more than 100 nodes. Here the total number of iterations is given by

h− 1 + d h
w
e · w.

As currently N < 10000, then h < 100 and so the total number of transactions

is h+ w − 2 (as the last row and column are not necessary).

5.4.6 Time and transaction costs

Delgado-Segura et al. found that each iteration took roughly 2.5 minutes per iter-

ation. On the Bitcoin testnet with ∼ 1000 nodes, it would be 2.6 hours. On the

main Bitcoin network with ∼ 10,000 nodes, this would take 8.5 hours.

In each iteration, we must spend transaction fees on txcleanse, one txsi , and either

the flood transaction txf or a parent-marker pair txpi , txmi
. Given a source set of size

n, there is a n
N

probability of a parent-marker pair being accepted in the blockchain,

and N−n
N

for the flood transaction. So the expected number of transactions for an

iteration is 3 + n
N

. Given ∼ 10,000 nodes, the researchers estimated the total cost

8from [28]

67



to be between 5.7 × 10−3 and 7.6 × 10−3 BTC, currently between 46.42 and 61.93

USD.

5.4.7 Accuracy

The researchers set up 5 nodes for validation on the Bitcoin testnet. They excluded

any nodes that they weren’t able to InvBlock in a trial run, any nodes that at some

point held the wrong transaction (not txf or txpi when they were meant to) and any

that disconnected from the monitor node during the experiment.

Over 40 trials of the experiment, TxProbe achieved 100% precision with a 95%

confidence interval for recall between 93.86% and 95.45%.

Interestingly, they also found that the Bitcoin testnet was not a random graph.

5.4.8 Discussion

The accuracy of this method can be attribute to its robustness to false positives.

As orphan transactions don’t propagate through the network, it is obvious to detect

when nodes are peers. The flood transaction prevents false positives as it travels to

all nodes in the network, even unobserved ones. This way, the parent transactions

can’t be propagated to unobserved nodes, and so false inferences can’t be made.

This is a property that the other methods in this paper don’t posses, and makes

this method very powerful.

The researchers do acknowledge how damaging the method is. Running one test

on the Bitcoin mainnet would disable the use of orphan transactions for normal users

for over 8 hours, which could significantly interfere with transaction propagation

times and reliability.

An improvement to the method may be made by observing that marker nodes

propagate in much the same way through the source nodes as through the sink

nodes, and so it would be possible to infer links within the source set by cleansing

all MapOrphanTransactions structures and sending INV messages to them as well

as the sink set. As the nodes of the source set are not aware that the marker

transactions have inputs that are double spends of their own parent transactions,

they would be accepted as orphan transactions, allowing for the same inference.

This would improve the method by limiting the number of iterations to d N
100
e, as it

would be sufficient to include each node in the source set at least once.

Alternatively, this method could be re-framed as a node-specific inference tech-

nique. If we have a singleton source set of one node, then we only need to generate

one orphan transaction, so we don’t need to empty any MapOrphanTransactions

68



structures. Now we can view it as a fairly reliable, unintrusive and quick way of

finding all the peers of a given node. While this doesn’t meet the goal of finding

the entire network topology, this would be a very effective method of mounting an

attack requiring the knowledge of a node’s peers.

TxProbe cleverly exploits the idiosyncracies of the Bitcoin protocol, but for this

reason it also rests on them heavily. It relies on the way orphan transactions are

stored and propagated, how MapOrphanTransactions evicts entries, the ability to

conduct InvBlock, and the way conflicting transactions are dropped. If any of these

were altered, the method would become unusable. This is a new and overly effective

and damaging technique. We should not expect to see the protocol developers

allowing this to continue far into the future.

5.5 2019: Daniel, Rohrer, and Tschorsch

[33] Map-Z: Exposing the Zcash Network in Times of Transition

In an attempt to create a technique that would be immune to changes in protocol,

Daniel, Rohrer and Tschorsch created a passive, network-wide, statistical method

for inferring the ZCash P2P network. It is based on the earlier statistical method

by Neudecker et al. [21], and applied to block arrival times on the ZCash network.

Zcash [34] is a blockchain based digital currency that was developed to improve

upon Bitcoin’s security features. It features a method of zero-knowledge proofs [35]

that allow for anonymous transactions that are still publicly verifiable. Otherwise,

the protocols are very similar.

Apart from the network, the key differences in their method are that it focuses on

block arrival times instead of transactions; and that a passive measuring approach

was taken, so using this method does not require generating transactions. In doing

so, the researchers restricted their focus to the peers of nodes that mine blocks or

introduce them to the network from mining pools. This is a useful area of study as

a significant aspect of the health of the network is ensuring that nodes generating

blocks are adequately connected, so they can receive transactions and broadcast

blocks effectively.

5.5.1 Inference of shortest path length

Similarly to in Section 5.2.2, we define random variables D the arrival time of a

block sent from node v1 to v2, Cmin the shortest path length between those two

nodes, Λ the latency between two peers, and δ the processing delay at a node, which

69



is the time between a node receiving and sending a block. We assume that v1 is the

source of the block, a mining node, and that all nodes and pairs of nodes draw from

the same distributions d and λ. So we have

P (D = t|Cmin = l) = (Λ∗l ∗ δ∗l)(t) (5.11)

where ∗ denotes convolution, and a∗b denotes a to the b convolution power. Using

Bayes theorem we have

P (Cmin = l|D = t) =
P (D = t|Cmin = l)P (Cmin = l)

P (D = t)
. (5.12)

We can find P (D = t) from the law of total probability P (D = t) =
∑

l P (D =

t|Cmin = l). We can find P (Cmin = l) by assuming that the network is an Erdos-

Renyi random graph with mean degree deg and total number of nodes n. The

researchers interpreted this as a geometric distribution.

P (Cmin = l) =

(
1− deg

n− 1

)l−1

· deg

n− 1
. (5.13)

We model the latency Λ and node processing delay δ with normal distributions.

Λ(x) ∼ N(s;µΛ, σ
2
Λ); δ(x) = N(x;µδ, σ

2
δ ). From this we can construct the probabil-

ities

P (t− ε < D ≤ t+ ε|Cmin = l) =

∫ t+ε

t−ε
N
(
x; l(µΛ + µδ), l(σ

2
Λ + σ2

δ )
)
dx (5.14)

where ε is a tolerance variable on measurement error.

Daniel et al. parameterised Λ based on publicly available global latency measure-

ments. Parametrisation of δ is compared experimentally between previous research

[36] and experimental research on the average processing time of Zcash nodes.

5.5.2 Accuracy

The researchers set up one monitor node and one node for validation of its connec-

tions. They used an error tolerance of ε = 5ms and assumed a range of distances

between nodes of 1 to 9, inferring the distance with the highest mean probability

as the the likeliest distance. Using empirical measurements of processing time, they

were able to achieve a recall of 82.5% and precision of 50%.

70



5.5.3 Discussion

This method provides advantages and disadvantages over method provided by Neudecker

et al. [21], and has similar issues. This method is more accurate, however its scope

is limited to measuring connections with mining nodes. The ability to passively

measure timings makes it cheaper, less intrusive, and robust to countermeasures

against active measurements such as trickling.

Similarly to the previous method, an Erdos-Renyi random graph for the network

is assumed to construct a prior for the minimum paths between nodes. We have seen

experimentally that at least the Bitcoin P2P network and testnet are not random

graphs [20, 28], and that the inference used is only an approximation for path lengths

greater than 2. It also assumes independence of paths, which does not capture

information that may be useful to creating more accurate inference.

Using an Erdos-Renyi random graph model, they calculate the distribution of

the shortest path lengths to be geometric, with probability parameter deg
n−1

, which

would model the number of iterations of independent Bernoulli trials until the first

success. This interpretation is incorrect. We can speculate how they could arrive at

this conclusion, but it would rely on the assumption that we can draw independently

the probability that we can draw from samples of degree distributions independently.

However, degree distributions of nodes are not independent in a Renyi-Erdos random

graph, as knowledge of the degree of some nodes will inform the distribution of the

degrees of other nodes, due to either a fixed number of edges or an independent

probability of edges existing. Further, we can simulate the distribution for Cmin. We

can construct an Erdos-Renyi random graph with say, 10,000 vertices and 40,000

edges (similar to what we expect in the Bitcoin P2P network). Applying Dijkstra’s

Algorithm [37] to find the shortest path lengths, we can see the plot of an example

histogram in Figure 5.11. Clearly this does not come from a geometric distribution,

which is characterised by nonnegative monotonically decreasing probabilities.

A key assumption the researchers make is that both latency and processing

delay are normally distributed, which they provide no evidence for. While the

parameterisation for processing delay is experimentally optimised, latency is again

entirely modelled by geographical distance which may be too simple a generalisation.

The validation they use may not be a very good estimate. They only use one

monitor node and one validation node, which is a small sample size.

71



Figure 5.11: Simulated shortest path length distribution for an Erdos-Renyi graph

5.6 Similar and ongoing research

5.6.1 2018: Deshpande, Badis and George

[38] BTCmap: Mapping Bitcoin Peer-to-Peer Network Topology

These researchers perform a crawl of the Bitcoin nodes, finding the addresses stored

in each node’s memPool structure. Based on this, they recreate the Bitcoin P2P

network using the algorithms that nodes follow to create their connections. While

this is not a measurement of the exact topology of the Bitcoin P2P network, it does

provide a possible probabilistic outcome given the methods that Bitcoin nodes use,

and so they use repeated measurements of these resulting networks to characterise

various important traits of the real network.

5.6.2 2019: Ben Mariem

[39] Vivisecting Blockchain P2P Networks

In a his thesis investigating properties of blockchain P2P networks, Ben Mariem

outlines a passive, network-wide, statistical method for inferring the Bitcoin P2P

network. It is based on the literature surrounding infection cascades, which is dis-

cussed in Section 6.1.1. The steps he outlines are:

1. Collect a transaction’s arrival times from every reachable peer at a monitor

node vm;

2. Infer the source v0 of the broadcast and it’s initial broadcast time t0;

3. For each node vi, infer the propagation time along the path from v0 to vm

through vi;

72



4. Reconstruct the tree that the describes the path the transaction travelled

through to reach every node, representing the transaction’s exact broadcast

through the network;

5. After collecting many of these tree, reconstruct the topology as the union of

their edge sets.

A proof of concept of this algorithm is part of his ongoing work.

5.6.3 Other blockchain networks

Research is being performed on other blockchain implementations. However they

are studied to a far lesser degree than Bitcoin. These papers look at idiosyncratic

methods for discovering the topology of the Etherium [40] and Monero [41] P2P

networks respectively.

73



Chapter 6

Discussion

Having explored these methods of inferring the Bitcoin P2P network topology, we

now take a step back and provide a meta-analysis of this research topic. Under-

standing the trends and results should give us some insight into the evolution of this

problem.

In trying to formulate recommendations for where the research should proceed, it

is important to understand the interaction between the researchers in these papers

and the developers of the protocol. While the topic of privacy was addressed in

Nakamoto’s original paper [1] via the suggestion of keeping public keys anonymous,

some have argued [42] that anonymity was never a significant design goal of Bitcoin.

Other cryptocurrency implementations such as ZCash and Monero have appeared

for this very reason, with anonymity built in as a primary goal. In any case many

believe incorrectly that transactions in Bitcoin are anonymous, and the developers

of the Bitcoin protocol attempt to make it as anonymous as possible. Knowledge of

the topology can undermine this attempt, and facilitate various attacks as discussed

in the introduction.

Broadly speaking, researchers in this topic area have tried to develop techniques

for two reasons. Primarily, they wish to investigate the network, it’s properties,

and the health of the system as it’s own goal, to develop knowledge on the complex

Bitcoin ecosystem especially as gains relevancy in many societies. However, there is

also a second motive of wanting to inform the protocol developers of vulnerabilities.

For example, Neudecker et al. [21] show how trickling has impeded their inference,

and include a section on the analysis of trickling parameterisation, showing how

it can be used to prevent similar attacks. This is analogous to the practice of

penetration testing in security systems, where attacks are performed benevolently

to evaluate the security of the system.

We will no doubt see this interplay of conflicting priorities play out in future

74



papers and protocol updates. However, we can observe a trend hinting at movements

towards methods that require less assumptions on their models, and therefore less

reliance on idiosyncracies of the protocol, as seen in the most recent papers by

Daniel, Rohrer and Tschorsch [33] and Ben Mariem [39].

6.1 Fields of research

While the methods reviewed differ in many ways, they do share a significant com-

monality: they have not looked far into other fields for inspiration on how to tackle

the problem of topology inference. To some extent, these researchers may have been

trying to reinvent the wheel, a problem arising in many fields. There is an extremely

large literature surrounding topology inference. In this section we will discuss some

approaches in related fields that may be useful.

6.1.1 Infection cascades

The method of information propagation used by the Bitcoin P2P network is known

by several names including an epidemic protocol. We can think of transactions in

Bitcoin as contagions that spread like a virus, infecting nodes and moving through

their connections. This modelling has been used to study virus propagation in the

real world, but also as the basis for communication on various other implementations

of P2P networks.

In the broad class of stochastic models known as infection cascades, we have a

graph G = (V,E) and an initial vertex v0 ∈ V is randomly chosen as the source

of a contagion. At some time, the vertex can pass the contagion onto a neighbour,

who is infected with some probability according to the weight of the edge. This

process continues throughout the graph until every node is infected or the contagion

ceases spreading. In the case that no vertex can be infected more than once, there

cannot be a cycle in any path of the contagion, and so the process maps out a tree

consisting of infected nodes and the edges that the contagion crossed.

For instance, the common Susceptible-Infected-Recovered (SIR) model used in

mathematical epidemiology [43] can be applied to an infection cascade. We model

vertices as susceptible, with one initial infected node. Infected vertices either spread

the infection to their neighbours with some probability, or enter the recovered state,

where they no longer infect neighbours and are immune to future infection. This

can happen in either in discrete time or continuous time where infected vertices

attempts at some random times to infect its neighbours or recover.

75



We can model the Bitcoin P2P network as a simpler Susceptible-Infected (SI)

model in continuous time, where the source of the transaction is the initial infected

vertex, and the weight of all edges are 1. This corresponds to a guarantee of infection

on all edges - a guarantee that if a node sends a transaction to a neighbour who

hasn’t heard of it, they’ll request that transaction.

Using this framework, we can explore the literature on inferring epidemic graphs

in continuous SI systems. Here it is noted that even with perfect knowledge of infec-

tion times, the problem of finding the mostly likely graph to explain those times is

NP-hard [44]. The majority of models focus on perfect knowledge of infection times

[45, 46, 47], with extended research into inference from individual time snapshots of

the state of the contagion, or time series data [48]. However, where we use monitor

nodes to detect transaction arrival times, we cannot find the exact times that nodes

receive a transaction, as random propagation effects take place between when a node

receives a transaction and when it is forwarded onto us from that node. Recently,

some headway has been made into inference from noisy time observations [49], but

only cases of a discrete time cascades.

It would be useful to see if some previous modelling could be applied to noisy

time observations in the continuous case. Alternatively, results have been achieved

using knowledge of the times of infection of a subset of nodes [50]. We could interpret

our monitor timing measurements rather as exact times on new nodes. For every

node vi ∈ V , we construct a node ui and the edge (ui, vi). Rather than a noisy time

measurement of vi, we interpret this is an exact time measurement of ui, and no

measurement of vi, and use the theory available on sparse timing measurements.

6.1.2 Network tomography

Network tomography is the study of network properties by observing end-point

data, which is the data retrievable at the nodes of a system. This is also what

we are attempting to achieve. This field is largely driven by efforts to characterise

the internet. The internet has many functionalities and properties: in general, the

internet is characterised as a client-server network [51], but in other parts we can

observe peer-to-peer behaviour, even if not operating a gossip protocol. For instance,

consider torrenting [52], the practice of efficient replication and distribution of files

across computers on a P2P network using the internet. Here there have been studies

into network topology using timing delay measurements [53].

Group communication over the internet is commonly performed through a com-

munication method known as multicast, where a single computer wishes to send

information to a group of destination computers simultaneously. In these networks,

76



the messages have to travel via a group of intermediary nodes such as other entities

on the internet like as routers or switches. There is significant literature surrounding

topology in multicast systems using delay or similar measurements [54, 55, 56]

6.1.3 Machine Learning

Classification problems are a very common topic of study in the field of machine

learning. While graphs frequently investigated, it is usually in the context of pre-

dicting new edges given pre-existing knowledge of the topology, such as on predicting

new friends in a social network [57]. A seminal paper by Vert and Yamanishi [58]

introduced the problem of supervised network inference. However, the large bulk of

literature comes from computational biology in modelling protein and gene networks,

and are not necessarily applicable to this problem.

6.2 Moving forward

We categorise the methods used in Chapter 5 in Figure 6.1. It is hard to place a

value judgement on whether research should aim to be node-specific or network-

wide, as they both have their uses. A successful node-specific method would expose

vulnerabilities for attacks and allow for more accurate validation, whereas network-

wide approaches provide information about the entire network, which can be used

to study its properties. Even considering the Map-Z method in [33], a focus on just

the topology surrounding mining nodes can have its use.

Figure 6.1: Categorisation of methods

passive active

idiosyncratic AddressProbe
Grundmann et al.

TxProbe

statistical
Map-Z

Ben Mariem
Neudecker et al.

However in considering the direction of future research, it may be prudent to

develop methods that are both passive and statistical. Active approaches may be

very expensive given the need for transactions, as in Grundmann et al.’s method of

transaction accumulation [32], or highly invasive, as in TxProbe [28]. The passive

methods discussed did not encounter these issues, as they simply connect to the

network and take measurements. Idiosyncratic methods have had the most success,

with both AddressProbe and TxProbe being highly accurate, but their success rests

on minute details of the underlying protocol for which they are built. While it is

77



useful to find vulnerabilities in the protocol, it is highly likely that the protocol

developers will alter the protocol to stop methods from being used for too long.

Statistical methods still encounter this problem, as in [21], but this is due to the

statistics resting on known distributions that are part of the protocol or implemen-

tation. A statistical method further removed from the protocol, as in Map-Z [33],

is more likely to stand the test of time.

Ideally, we would like a statistical model based on transaction arrival times that

does not make assumptions about the network it is studying. If we can create this,

the model would be impervious to changes in protocol, and would be generalisable

to other P2P networks where we study timing delays. We explore this possibility in

Part III.

78



Part III

Simulation and Learning

79



Chapter 7

Bitcoin Simulation

In considering the problem of inferring the topology of a P2P network employing a

gossip protocol, we have now motivated a model that passively measures message

time arrivals and that should not be based on any further assumptions from the

specific behaviour of nodes on that network. Over the next two chapters, we inves-

tigate using nonparametric techniques how information is stored in the structure of

a delay correlation matrix, and then based on this present a proof of concept for

learning the edges of a network using a training-validation approach.

7.1 Intuition

We have an undirected P2P network running a gossip protocol, where a node for-

wards on a message to a given peer at a time given by some unknown probabilistic

distribution. We consider two nodes v1 and v2, which are connected via many dif-

ferent paths in the network. We expect that the shorter the minimum path length,

and the greater the number of paths, the shorter the time should be on average for

a message to be sent between them. In particular, if the two nodes are peers, we

expect that the time at which they receive messages should be similar. Either v1

sends the message to v2 or vice versa, in which case we only incur a delay of one

path length, or they receive the messages from other peers at a similar time, the

difference between those times being short enough to be less than the delay incurred

by the one path between them.

We cannot say that the reverse is true, however. Given two nodes receive a

message at similar times, we cannot say they are peers: is possibly just coincidental.

However, if they are not peers, we would not expect this coincidence of similar arrival

times to consistently continue. Therefore any given node’s timing measurement

should be more highly correlated with its peers than with nodes further away, given a

80



large number of measurements. Similar approaches have been taken to infer network

topology in computational biology [59] and multicast network tomography [54].

7.2 Delay correlation

Given a graph G = (V,E), set of n nodes vi, . . . , vn ∈ V and a monitor node vm

connected to all of those nodes, for a message txk, the monitor node vm will receive

the message txk from node vi at arrival time trik. We take the first time we receive

the message

tr∗k = min
i∈{1,...,n}

(trik), (7.1)

and subtract that from each arrival time to give the delay

tik = trik − tr∗k. (7.2)

We define a non-negative random variable Xi to describe the delays tik at node vi.

We desire a nonparametric model, not making any assumptions on the distribution

of Xi. We model the delays tik, k ∈ {1, . . . ,m} as independent outcomes Xi. This

independence makes a simplifying assumption that the messages themselves trace

out independent trees on the underlying true graph. We note that this may not be

true in general, as messages may interfere with each other, (for instance if a node is

slowed by having to process multiple messages simultaneously). Given m messages,

we can represent this information in the measurement matrix T ,

T =


t11 t12 . . . t1m

t21 t22 . . . t2m
...

. . .
...

tn1 tn2 . . . tnm

 , (7.3)

where the delay times of each node vi are given by the row i of T .

A simple measure of dependency between two delay random variables Xi and Xj

is the Pearson correlation ρij, which gives the linear dependency of the two random

variables. If for i ∈ {1, . . . , n} we have E[Xi] = µi and var(Xi) = σ2
i , ρij is given by

ρij =
E[(Xi − µi)(Xj − µj)]

σiσj
. (7.4)

We define the sample correlation rij between the observation sets {ti1, . . . , tim}

81



and {tj1, . . . , tjm} as

rij =

∑m
k=1(tik − t̄i)(tjk − t̄j)√∑m

k=1(tik − t̄i)2
∑m

k=1(tjk − t̄j)2
, (7.5)

where for any i ∈ {1, . . . , n}, t̄i = 1
m

∑m
k=1 tik. Note that rij = rji, and rii = 1. In

general, we cannot say that the sample correlation converges to the correlation, but

we make this simplifying assumption so that, with more messages, we assume higher

accuracy of our estimated correlation. We can represent the sample correlations in

the matrix R,

R =


1 r12 . . . r1n

r21 1 . . . r2n

...
. . .

...

rn1 rn2 . . . 1

 , (7.6)

Now we have
(
n
2

)
distinct rij entries in R, corresponding to one correlation mea-

surement for each edge. The question now is whether we retrieve the correct classifi-

cation of edges from the correlations, with no further assumptions on the underlying

graph. Is all the information we need stored in R? We now attempt to find some

algorithms f such that E ≈ f(R).

7.3 Simulation setup

In order to answer this question, we will perform some experiments on a simulation

of the Bitcoin P2P network. In the paper by Neudecker et al. [21], a statistical delay

model was tested on a simulation with 100% recall and 90% precision, which became

only 40% recall and precision on the real network. Grundmann et al.’s [32] idiosyn-

cratic double spend method achieved 96% recall and 94% precision in simulation,

which became 87% recall and 71% precision on the real network. Similarly, in Daniel

et al.’s [33] statistical mehtod, 100% recall and 50% precision decreased to 82.5%

recall and 50% precision when tested on the real network over one measurement.

While simulation results may be misleading, it is important to keep in mind that

in these papers, the methods they used and the simulations they developed came

from the same modelling of the network, built on knowledge of the Bitcoin protocol.

Therefore the accuracy in the simulations would have been reported as higher than

in the real network due to the shared assumptions of the simulation and methods;

methods not necessarily shared in the real network and method. For instance,

Neudecker et al. assume a Erdos-Renyi graph for both their model and simulation,

which gave misleading figures when the model was tested on the simulation. The

82



accuracy dropped in part due to the Bitcoin P2P network not being a true random

graph.

If we use different assumptions for our simulation and model, then we may be

able to improve our model to create a more general method for approaching many

different networks. In our model, we have assumed that the sample correlation rij

converges to the real correlation ρij, and that ρij contains information on the edges.

We will not use these assumptions in the simulation. We acknowledge the common

assumptions for later discussion:

1. the network is an undirected graph;

2. nodes relay messages to peers after receiving them, at times according to some

probabilistic distribution;

3. messages propagating through the network are independent events.

7.3.1 Simulated gossip protocol

We simulate a P2P network by generating an Erdos-Renyi random graph G = (V,E)

with n vertices vi ∈ V and N edges ei ∈ E. In order to account for various

trickling, latency, and other delays both intentional an unintentional, we generate

delay distributions. Each node vi is given a relay delay Λi ∼ Exponential(λi).

We also assign each node vi a processing delay Πi ∼ Uniform(a, πi) where πi ∼
Pareto(γ, δ). λi ∼ Gamma(α, β) and πi are drawn once for each node at the start

of the simulation. We can parameterise delay in the simulation by a, α, β, γ and δ.

In particular a lets us control the minimum time between a message arriving at a

node and the relaying of a message to a peer.

When a node vi receives a message, it draws a relay delay for each of its peers

vj from Λi. Each of those peers then adds a delay drawn from Πj before it can send

the message onto its own peers.

Miller et al. [20] found that about 2% of nodes were responsible for 75% of the

mining power. We want to model messages generally, whether they are transactions

or blocks, so we allow for this heavy-tailed behaviour. We wish for a distribution

where dn proportion of nodes account for ds proportion of message sources.

Consider ξ ∼ Pareto(1, c). We define and calculate the discretised truncated

83



Pareto distribution for random variable D,

P (D = i|n) : = P (i ≤ ξ ≤ i+ 1|ξ ≤ n+ 1);

=
P (i ≤ ξ ≤ i+ 1, ξ ≤ n+ 1)

P (ξ ≤ n+ 1)
;

=
P (i ≤ ξ ≤ i+ 1)

P (ξ ≤ n+ 1)
1{i ≤ n};

=
1

1−
(

1
n+1

)c [ 1

ic
− 1

(i+ 1)c

]
1{1 ≤ i ≤ n}. (7.7)

where the value for c is calculated numerically as the solution to

ds = P (D ≤ dn · n|n) =
1

1−
(

1
n+1

)c [1− 1

(dn · n+ 1)c

]
(7.8)

Now we can simulate the cascade of a message trk through the graph G. We pick

a node vi according to distribution D, with its arrival time set to 0, and all other

arrival times set at ∞. In each iteration we pick the node with the lowest arrival

time that hasn’t propagated the message before. We draw new arrival times for

each of its peers vj as an outcome of Λi + Πj, updating the arrival time if it is less

than the one stored. Finally, for each node vi, we add to the arrival time a sample

from Λi representing the time trik that the monitor node receives the message from

vi. Across multiple cascades, we record all the trik values and build the correlation

matrix R.

7.4 Edge detecting algorithms

Now we can start developing nonparametric algorithms to reverse engineer the prob-

lem, determining E from R. We essentially use all of test E as both a training set

to develop these algorithms, and the validation set to test them. The goal here is

to see if information about E can be recovered from R. Of course a trivial method

would be to enumerate all possible edge combinations, then select values in R that

correspond to the correct edges: on testing, we would have all the right edges. How-

ever we wish to see if there is a structured approach we can take that can give us

structural insights about R.

84



7.4.1 MaxCorr

Consider this very basic approach in Algorithm 1: for each node vi, we find the

maximum correlation in its row i in R, and take the corresponding column as a

peer. At best this approach will predict n edges, giving a maximum recall of n
N

or
2
deg

, which bounds the F1 score from above at 4·precision

2+precision·deg
for all values of deg ≥ 2.

7.4.2 ThreshCorr

Improving on this in Algorithm 2, we set a threshold value r∗, and for all correlations

rij > r∗, we take rij to be an edge. Another way of thinking about r∗ is that it

defines the number k∗ edges to include. We take all
(
n
2

)
distinct values rij, and

order them by size, taking the k∗ edges with the highest corresponding correlations.

This method is not bounded in recall or precision. It is preferable to work with

k∗ rather than r∗, as k∗ is an integer. This allows us to fully compute the various

accuracy statistics as functions of k∗, as opposed to r∗, on which we are not sure

which values the accuracy functions will change. Through computing values of an

accuracy statistic, we can optimise the choice of k∗.

7.4.3 EdgeCorr

Taking this idea of thresholds further in Algorithm 3, we consider for each node vi

some threshold r∗i . For all entries in the ith row of R, include all edges that have

corresponding correlations rij ≥ r∗i . Again, this can also be though of as a number

k∗i of edges to include for each node, taking the k∗i edges corresponding to the largest

correlation values. As there will be n threshold values, and for each node between

0 and n − 1 edges to include, there are nn combinations of parameters. This is an

intractable number to enumerate for any problem that we wish to consider. We

must therefore employ optimisation algorithms. We will use coordinate ascent (CA)

and simulated annealing (SA) as described in Section 2.4.

7.5 Results

We ran the simulation with n = 500 nodes, average degree deg = 8 (N = 2000 edges)

for 10,000 messages. Given that in the last seven days, at the time of writing, an

average of 3.7 transactions per second entered the Bitcoin network [60], this would

correspond to 45 minutes of passive listening time. We set (a, α, β, γ, δ, dn, ds) =

(20, 20, 5, 1.25, 20, 0.1, 0.5), with n = 500 nodes, N = 2000 edges. We ran 10,000

messages.

85



We will compare the algorithms based on recall, precision, and F1 score. Recall

that the F1 score is

F1 = 2 · recall · precision

recall + precision
, (7.9)

with 0 ≤ F1 ≤ 1. An algorithm with an F1 score of 1 classifies perfectly. We use

F1 scores here predominantly as it lets us define an objective function to maximise,

measuring the accuracy of a model with a scalar value that takes many factors into

account.

MaxCorr

First we consider MaxCorr, picking the edge with the highest correlation for each

node. We compared this classification with the true network, resulting in a recall of

22.6% and a precision of 97.4%, with an F1 score of 0.37. This is very close to the

theoretical limit of recall at 25%. This method does not capture a good proportion

of the edges, but is highly accurate for those that it does predict. This shows that

correlation is an extremely good predictor when the correlation is relatively high for

the node.

ThreshCorr

Implementing ThreshCorr, we calculate the F1 score for each value of k∗, which is

the model that predicts the k∗ edges with the highest correlations. In Figure 7.1

we choose a computationally feasible range of values of k∗ between 0 and 8000, and

pick the model with the highest F1 score. The highest range of F1 scores is reached

between 1000 and 3000 nodes, which we can compare with the total simulated edges

N = 2000. As for larger numbers of nodes, computing all
(
n
2

)
k∗ may be infeasible,

but we can assume that this method will give best results close to N . We note

the presence of local maxima throughout the plot, especially surrounding the global

optima. This will be necessary to consider for the next threshold methods. The best

model that this method would be able to predict given this data set is at k∗ = 1371

with 39.5% recall, 57.6% precision, and 0.46 F1 score.

EdgeCorr

In implementing EdgeCorr, we require optimisation of n = 500 threshold values k∗i ,

one for each node. There is a discrete solution space of 500500 ≈ 101350 solutions to

explore. We first use CA. We consider the outcome of ThreshCorr, which gives a

best guess of edges between 1000 and 3000, corresponding to average node degree

between 4 and 12. We pick a starting solution of all k∗i at 8, and for a solution

86



Figure 7.1: ThreshCorr: F1 score against k∗ edges included.

x = (x1, . . . , x500) define the coordinate neighbourhood as all solutions within a

reasonable distance of 3 from the given coordinate value, with all other coordinates

being kept equal, Ni(x) = {y ∈ N500|yi ∈ [xi − 3, xi + 3], yj = xj, j 6= i}. Recall that

this algorithm ceases when it goes through n iterations without changing.

Figure 7.2: EdgeCorr: F1 score against iterations of CA.

In Figure 7.2, we observe how CA progresses over its iterations, rising mono-

tonically to a local minimum at F1 = 0.80, defining a model given by the resulting

set of k∗i values with a recall of 79.4% and precision of 81.0%. It is interesting to

observe that the starting solution of all k∗i = 8 gives a better F1 score than the

optimal model using ThreshCorr. We can conjecture that some nodes have lower

correlations on average than others, and that it is the correlations that are high-

est (relatively) within that node that is the better predictor, rather than highest

correlations in general.

We also perform selection of thresholds with the SA algorithm. Given the low

87



“energy” needed to pass through the solution space, we set the initial highest tem-

perature at Ti = 0.0005. We set the final temperature to just above 0, and choose

a simple cooling schedule. Given that we want I iterations, we linearly increment

the temperature at s(T ) = T − Ti
I

. We define the same neighbourhood as in CA,

however in this case instead of cycling through the coordinates and finding the best

solution within a distance of 3, in each iteration we pick a coordinate at random

and choose a random change between -3 and 3.

Figure 7.3: EdgeCorr: F1 score against iterations of SA.

In Figure 7.3, we can see how SA progresses through its iterations. SA benefits

from longer run-time [61], and so we ran it for 100,000 iterations. We can see the

characteristic fluctuations of the curve as it accepts worse solutions, far more at the

start and then decreasingly as it progresses. We eventually arrived at a model with

79.6% recall and 82% precision, with an F1 score of 0.81.

7.6 Discussion

Figure 7.4: Table of accuracy results

recall precision F1

MaxCorr 22.6% 97.4% 0.37
ThreshCorr 29.5% 57.6% 0.46

EdgeCorr with CA 79.4% 81.0% 0.80
EdgeCorr with SA 79.6% 82.0% 0.81

Considering the results in Figure 7.4, we can conclude that through exploring a

variety of methods that information of the edge set of this simulated P2P network

is contained within its correlation matrix R derived from timing measurements.

88



To at least some extent, this information is retrievable through considering the

ordering of correlation values. Of particular interest is the result for MaxCorr which

demonstrates extremely high precision in predicting a proportion of the edges in

a remarkably simple way. This could be combined with other models to improve

overall accuracy.

The method used in ThreshCorr, while not the most striking of the results, is

interesting in that it only uses one value k∗ to classify edges and has a result that is

far better than random. Perhaps there is some operation that could be performed on

the correlation matrix, even using a different dependency metric from the Pearson

correlation, that would allow for edges to be separated more cleanly. Or perhaps

the sample Pearson correlation is not the best dependency metric

In foreseeing the results of applying this methodology to real networks, we must

challenge the common assumptions that were used to create both this simulation

and model. First we assumed that the network is undirected, which is not true of the

Bitcoin P2P network as the delay distributions for incoming and outgoing peers are

different, as discussed in Section 5.3. Secondly, we assumed arbitrary distributions

as part of the process of message propagation, whereas the protocol includes trickling

countermeasures that optimise obfuscation of timing analyses. However, the authors

of Map-Z claimed that their passive method was immune to trickling. Thirdly, we

assumed independence of messages, which may not be true in general as there are

peer processing delays and bandwidth delays to consider when multiple messages

are simultaneously propagating through the network.

89



Chapter 8

Learning on Message Time

Correlation

Here we formalise the methods from Chapter 7 into a machine learning approach.

In the last chapter, we used full knowledge of the graph edges to test to what extent

it is possible to recover information from the structure of the correlation matrix.

In this chapter, we test to what extent it is possible to learn the edges of a graph

using only timing measurements, providing a proof of concept for applying passive,

nonparametric statistical models to this research area.

8.1 Experiment setup

We set up our experiment similarly as in Chapter 7, with n = 500 network nodes plus

an additional 5 testing and 5 validation nodes, average degree deg = 8 (N = 2040

edges), k = 10, 000 messages and (a, α, β, γ, δ, dn, ds) = (20, 20, 5, 1.25, 20, 0.1, 0.5).

However, we now also create 5 testing nodes and 5 validation nodes, connected to

the network as part of the random graph. Whereas in the last chapter we used

knowledge of the whole network to optimise classification variables, here we use a

standard machine learning approach. We train the methods using knowledge of the

connections of the 5 training nodes, then apply the models to infer the connections

of yet unseen validation nodes. This will test the prediction power of the developed

models, and give approximations for the accuracy across the whole network.

8.2 Results

We implemented the same four methods of testing across this experiment. On the

training data (the edges of the training nodes) the methods optimised to achieve

90



the results in Figure 8.1. Out of 2525 possible edges, there were 38 true edges to

deduce.

recall precision F1

MaxCorr 21.1% 88.9% 0.34
ThreshCorr 47.4% 52.9% 0.50

EdgeCorr with CA 78.9% 96.8% 0.87
EdgeCorr with SA 81.6% 86.1% 0.84

Figure 8.1: Optimal models on testing data.

Taking the same predicted edge sets, the models achieved the results in Figure

8.2 based on the edges of 5 unseen validation nodes with 42 true edges out of 2525

possible edges.

recall precision F1

MaxCorr 11.9% 100% 0.21
ThreshCorr 23.8% 76.9% 0.36

EdgeCorr with CA 0.00% 0.00% 0.00
EdgeCorr with SA 54.8% 85.7% 0.60

Figure 8.2: Models applied to validation data.

The obvious feature here is the drop of accuracy to nothing in the coordinate

ascent variation of EdgeCorr. This is not a mistake. With a total of 2040 edges in

the graph, this method only predicted 64, consisting of 31 predictions accounting

for the results on the testing set, and another 33 false positives. This is consistent

with observations in toy problems in developing these algorihtms, where the CA

performed worse as the number of nodes increased. We can conjecture that the

greedy nature of CA causes it to drastically overfit, whereas the exploratory nature

of SA is much better suited for arriving at solutions that are reflective of the network

as a whole.

The other feature to note is the change in accuracy for MaxCorr. This method

doesn’t use any training data; these results can therefore be interpreted as reflective

of this method’s accuracy. We should interpret the others methods similarly re-

flective as outcomes of the true distribution of their accuracy. Further experiments

should be used to give confidence intervals in a full analysis, however we only show

here a proof of concept.

91



8.3 Discussion

Here we provided a proof of concept of the possibility of developing passive, nonpara-

metric statistical approaches to P2P gossip protocol topology that are independent

from most assumptions built into the network. Specifically, we used measurements

of delay times to create a correlation matrix describing the dependency of nodes.

We found that taking the maximum correlation of each node to predict edges was

extremely precise, and should be considered as part of other models. We also found

that by learning the individual number k∗i of the highest correlated potential peers

for each node vi, we could predict with accuracy as compared with other methods

in the literature, provided a good optimisation algorithm is selected.

These methodologies are by no means state of the art. They are merely well-

motivated inferences based on simple modelling, with which to prove the possibility

of broadening the research area of P2P gossip protocol topology inference. With

more considered modelling approaches and well-designed hypothesis testing, we be-

lieve these methods can be far outperformed.

92



Conclusion

In this thesis we explored methods of inferring the Bitcoin P2P network topology.

We conducted a thorough review of the literature, exploring the techniques used

based on statistical inference and the idiosyncratic properties of the Bitcoin proto-

col. Through an meta-analysis of the methods, taking into account the desire of the

Bitcoin protocol developers to prevent inference, we motivated recommendations

towards researching passive, statistical techniques based on timing measurements

of transactions or blocks. Following this, we developed nonparametric statistical

models, creating three algorithmic methods as a proof of concept. Through testing

via simulation, we were able to show that information of network edges could be de-

duced from timing measurements of message propagation, free of other assumptions

about the network.

93



Appendix A

Algorithms

Algorithm 1: MaxCorr

Input : nodes vi ∈ V ; correlations rij ∈ R; i, j ∈ {1, . . . , n}
Output: Set of edges E ′

1 for i ∈ {1, . . . , n} do

2 col = arg maxj={1,...,n},j 6=i{rij}
3 ei = (vi, vcol)

4 end

5 E ′ =
⋃
i∈{1,...,n}{ei}

Algorithm 2: ThreshCorr

Input : nodes vi ∈ V ; correlations rij ∈ R; threshold r∗; i, j ∈ {1, . . . , n}
Output: Set of edges E ′

1 E ′ = ∅
2 for i ∈ {1, . . . , n− 1} do

3 for j ∈ {i, . . . , n} do

4 if rij ≥ r∗ then

5 put (vi, vj) ∈ E ′

6 end

7 end

8 end

94



Algorithm 3: EdgeCorr

Input : nodes vi ∈ V ; correlations rij ∈ R; thresholds r∗i ; i, j ∈ {1, . . . , n}
Output: Set of edges E ′

1 E ′ = ∅
2 for i ∈ {1, . . . , n} do

3 for j ∈ {1, . . . , n} \ {i} do

4 if rij ≥ r∗i then

5 put (vi, vj) ∈ E ′

6 end

7 end

8 end

Algorithm 4: Coordinate ascent

Input : initial x0 ∈ Rn; cost f ; feasible set χ; neighbourhood Ni(x)

Output: Solution x

1 x← x0

2 i← 1

3 while x has changed in the last n iterations do

4 x∗ ← arg maxxj∈Ni(x) f(xj)

5 if f(x∗) ≥ f(x) then

6 x← x∗

7 end

8 if i = n then

9 i← 1

10 else

11 i← i+ 1

12 end

13 end

95



Algorithm 5: Simulated annealing (maximisation)

Input : initial x0 ∈ Rn; cost f ; feasible set χ; neighbourhood N (x); initial

temperature Ti; final temperature Tf ; cooling schedule s.

Output: Solution x

1 x← x0

2 T ← Ti

3 while T > Tf do

4 randomly pick y ∈ N (x)

5 δ = f(y)− f(x)

6 if δ > 0 then

7 x← y

8 else

9 sample u from Uniform[0,1]

10 if u < exp
{
− δ
T

}
then

11 x← y

12 end

13 end

14 T ← s(T )

15 end

96



Bibliography

[1] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[2] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh Kalyanaraman,

et al. Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6-10):71,

2016.

[3] George Foroglou and Anna-Lali Tsilidou. Further applications of the

blockchain. In 12th Student Conference on Managerial Science and Technology,

2015.

[4] Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic cas-

cades. In ACM SIGMETRICS Performance Evaluation Review, volume 40,

pages 211–222. ACM, 2012.

[5] Sergi Delgado-Segura, Cristina Pérez-Solà, Jordi Herrera-Joancomart́ı,

Guillermo Navarro-Arribas, and Joan Borrell. Cryptocurrency networks: A

new p2p paradigm. Mobile Information Systems, 2018, 2018.

[6] Johannes Göbel, Holger Paul Keeler, Anthony E Krzesinski, and Peter G Tay-

lor. Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of

propagation delay. Performance Evaluation, 104:23–41, 2016.

[7] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is

vulnerable. Communications of the ACM, 61(7):95–102, 2018.

[8] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymisation

of clients in bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, pages 15–29. ACM,

2014.

[9] Matthias Lei. Exploiting bitcoin’s topology for double-spend attacks, 2015.

[10] Paul Erdös and Alfréd Rényi. On random graphs i. Publicationes Mathematicae

(Debrecen), 6:290–297, 1959.

97



[11] Pearson discrete maths solutions. http://www.maths.lse.ac.uk/Personal/

jozef/MA210/08sol.pdf.

[12] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Com-

mentarii academiae scientiarum Petropolitanae, pages 128–140, 1741.

[13] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[14] Kristian Bjoernsen. Koblitz curves and its practical uses in bitcoin security.

order (ε (GF (2k), 2(1):7, 2009.

[15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Security evalua-

tion of sha-224, sha-512/224, and sha-512/256. 2015.

[16] Nicolas T Courtois, Marek Grajek, and Rahul Naik. Optimizing sha256 in

bitcoin mining. In International Conference on Cryptography and Security Sys-

tems, pages 131–144. Springer, 2014.

[17] Rajul Parikh, Annie Mathai, Shefali Parikh, G Chandra Sekhar, and Ravi

Thomas. Understanding and using sensitivity, specificity and predictive values.

Indian journal of ophthalmology, 56(1):45, 2008.

[18] Andrew P Bradley. The use of the area under the roc curve in the evaluation

of machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[19] Hongge Chen et al. Novel machine learning approaches for modeling varia-

tions in semiconductor manufacturing. PhD thesis, Massachusetts Institute of

Technology, 2017.

[20] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave Levin, Neil

Spring, and Bobby Bhattacharjee. Discovering bitcoin’s public topology and

influential nodes. et al, 2015.

[21] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. Timing anal-

ysis for inferring the topology of the bitcoin peer-to-peer network. In

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Ad-

vanced and Trusted Computing, Scalable Computing and Communications,

Cloud and Big Data Computing, Internet of People, and Smart World

Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pages 358–367.

IEEE, 2016.

98

http://www.maths.lse.ac.uk/Personal/jozef/MA210/08sol.pdf
http://www.maths.lse.ac.uk/Personal/jozef/MA210/08sol.pdf


[22] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by

simulated annealing. science, 220(4598):671–680, 1983.

[23] Bitnodes. https://bitnodes.earn.com/.

[24] Bitcoin wiki: Protocol documentation. https://en.bitcoin.it/wiki/

Protocol_documentation#Block_Headers.

[25] Digiconomist. Bitcoin energy consumption index. https://digiconomist.

net/bitcoin-energy-consumption, 2019.

[26] Aapeli Vuorinen. The blockchain propagation process: a machine learning and

matrix analytic approach. https://bitcoin.aapelivuorinen.com/, 2019.

[27] Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint

arXiv:1402.2009, 2014.

[28] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, An-

drew Pachulski, Andrew Miller, and Bobby Bhattacharjee. Txprobe: Discov-

ering bitcoin’s network topology using orphan transactions. arXiv preprint

arXiv:1812.00942, 2018.

[29] Testnet. https://en.bitcoin.it/wiki/Testnet.

[30] Transaction confirmation. https://en.bitcoinwiki.org/wiki/

Transaction_confirmation.

[31] Gerhard J Woeginger. Exact algorithms for np-hard problems: A survey.

In Combinatorial optimization—eureka, you shrink!, pages 185–207. Springer,

2003.

[32] Matthias Grundmann, Till Neudecker, and Hannes Hartenstein. Exploiting

transaction accumulation and double spends for topology inference in bitcoin. In

International Conference on Financial Cryptography and Data Security, pages

113–126. Springer, 2018.

[33] Erik Daniel, Elias Rohrer, and Florian Tschorsch. Map-z: Exposing the zcash

network in times of transition. arXiv preprint arXiv:1907.09755, 2019.

[34] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,

pages 459–474. IEEE, 2014.

99

https://bitnodes.earn.com/
https://en.bitcoin.it/wiki/Protocol_documentation#Block_Headers
https://en.bitcoin.it/wiki/Protocol_documentation#Block_Headers
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://en.bitcoin.it/wiki/Testnet
https://en.bitcoinwiki.org/wiki/Transaction_confirmation
https://en.bitcoinwiki.org/wiki/Transaction_confirmation


[35] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-

cinct non-interactive zero knowledge for a von neumann architecture. In 23rd

{USENIX} Security Symposium ({USENIX} Security 14), pages 781–796, 2014.

[36] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert

Ritzdorf, and Srdjan Capkun. On the security and performance of proof of work

blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer

and communications security, pages 3–16. ACM, 2016.

[37] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-

merische mathematik, 1(1):269–271, 1959.

[38] Varun Deshpande, Hakim Badis, and Laurent George. Btcmap: Mapping bit-

coin peer-to-peer network topology. In 2018 IFIP/IEEE International Confer-

ence on Performance Evaluation and Modeling in Wired and Wireless Networks

(PEMWN), pages 1–6. IEEE, 2018.

[39] Sami Ben Mariem et al. Master thesis: Vivisecting blockchain p2p networks.

2019.

[40] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller,

and Michael Bailey. Measuring ethereum network peers. In Proceedings of the

Internet Measurement Conference 2018, pages 91–104. ACM, 2018.

[41] Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and Paulo Veŕıssimo.

Exploring the monero peer-to-peer network. IACR Cryptology ePrint Archive,

2019:411, 2019.

[42] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin

system. In Security and privacy in social networks, pages 197–223. Springer,

2013.

[43] William Ogilvy Kermack and Anderson G McKendrick. A contribution to

the mathematical theory of epidemics. Proceedings of the royal society of lon-

don. Series A, Containing papers of a mathematical and physical character,

115(772):700–721, 1927.

[44] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring net-

works of diffusion and influence. ACM Transactions on Knowledge Discovery

from Data (TKDD), 5(4):21, 2012.

100



[45] Bruno Abrahao, Flavio Chierichetti, Robert Kleinberg, and Alessandro Pan-

conesi. Trace complexity of network inference. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 491–499. ACM, 2013.

[46] Tiago P Peixoto. Network reconstruction and community detection from dy-

namics. arXiv preprint arXiv:1903.10833, 2019.

[47] Caitlin Gray, Lewis Mitchell, and Matthew Roughan. Bayesian inference of

network structure from information cascades. arXiv preprint arXiv:1908.03318,

2019.

[48] Alfredo Braunstein, Alessandro Ingrosso, and Anna Paola Muntoni. Network

reconstruction from infection cascades. Journal of the Royal Society Interface,

16(151):20180844, 2019.

[49] Jessica Hoffmann and Constantine Caramanis. Learning graphs from noisy

epidemic cascades. Proceedings of the ACM on Measurement and Analysis of

Computing Systems, 3(2):40, 2019.

[50] Xiao Han, Zhesi Shen, Wen-Xu Wang, and Zengru Di. Robust reconstruction

of complex networks from sparse data. Physical review letters, 114(2):028701,

2015.

[51] Hiroshi Nishida and Thinh Nguyen. Optimal client-server assignment for in-

ternet distributed systems. IEEE Transactions on Parallel and Distributed

Systems, 24(3):565–575, 2012.

[52] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong

Zhang. A performance study of bittorrent-like peer-to-peer systems. IEEE

Journal on selected areas in communications, 25(1):155–169, 2007.

[53] Peng Qin, Bin Dai, Guan Xu, Kui Wu, and Benxiong Huang. Taking a free

ride for routing topology inference in peer-to-peer networks. Peer-to-Peer Net-

working and Applications, 9(6):1047–1059, 2016.

[54] Nick G Duffield and F Lo Presti. Multicast inference of packet delay variance

at interior network links. In Proceedings IEEE INFOCOM 2000. Conference on

Computer Communications. Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies (Cat. No. 00CH37064), volume 3,

pages 1351–1360. IEEE, 2000.

101



[55] Nick G Duffield, Joseph Horowitz, and F Lo Prestis. Adaptive multicast topol-

ogy inference. In Proceedings IEEE INFOCOM 2001. Conference on Computer

Communications. Twentieth Annual Joint Conference of the IEEE Computer

and Communications Society (Cat. No. 01CH37213), volume 3, pages 1636–

1645. IEEE, 2001.

[56] Brian Eriksson, Gautam Dasarathy, Paul Barford, and Robert Nowak. Toward

the practical use of network tomography for internet topology discovery. In

2010 Proceedings IEEE INFOCOM, pages 1–9. IEEE, 2010.

[57] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for so-

cial networks. Journal of the American society for information science and

technology, 58(7):1019–1031, 2007.

[58] Jean-Philippe Vert and Yoshihiro Yamanishi. Supervised graph inference. In

Advances in neural information processing systems, pages 1433–1440, 2005.

[59] Sinisa Pajevic and Dietmar Plenz. Efficient network reconstruction from dy-

namical cascades identifies small-world topology of neuronal avalanches. PLoS

computational biology, 5(1):e1000271, 2009.

[60] Transaction rate. https://www.blockchain.com/charts/

transactions-per-second.

[61] Lester Ingber. Simulated annealing: Practice versus theory. Mathematical and

computer modelling, 18(11):29–57, 1993.

102

https://www.blockchain.com/charts/transactions-per-second
https://www.blockchain.com/charts/transactions-per-second

	Abstract
	Acknowledgments
	Introduction
	I Preliminaries
	Mathematical Preliminaries
	Random graphs
	Cryptography
	Accuracy metrics
	Optimisation algorithms

	Bitcoin Preliminaries
	The Bitcoin blockchain
	The Bitcoin protocol


	II Topology Discovery
	Problem Definition
	A Review of Prior Research
	2015: Miller and 6 other authors
	2016: Neudecker, Andelfinger, and Hartenstein
	2018: Grundmann, Neudecker, and Hartenstein
	2018: Delgado-Segura and 6 other authors
	2019: Daniel, Rohrer, and Tschorsch
	Similar and ongoing research

	Discussion
	Fields of research
	Moving forward


	III Simulation and Learning
	Bitcoin Simulation
	Intuition
	Delay correlation
	Simulation setup
	Edge detecting algorithms
	Results
	Discussion

	Learning on Message Time Correlation
	Experiment setup
	Results
	Discussion

	Conclusion
	Algorithms


